Using the risk of spatial extrapolation by machine-learning models to assess the reliability of model predictions for conservation

被引:0
|
作者
Kevin J. Gutzwiller
Kimberly M. Serno
机构
[1] Baylor University,Department of Biology
[2] Baylor University,Institute for Ecological, Earth, and Environmental Sciences
来源
Landscape Ecology | 2023年 / 38卷
关键词
Boosted regression trees; Importance values; Multiscale spatial optimization; Predictive models; Random forests; Training space;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1363 / 1372
页数:9
相关论文
共 50 条
  • [31] Reliability estimation for individual predictions in machine learning systems: A model reliability-based approach
    Zhang, Xiaoge
    Bose, Indranil
    DECISION SUPPORT SYSTEMS, 2024, 186
  • [32] Enabling personalized perioperative risk prediction by using a machine-learning model based on preoperative data
    Graessner, Martin
    Jungwirth, Bettina
    Frank, Elke
    Schaller, Stefan Josef
    Kochs, Eberhard
    Ulm, Kurt
    Blobner, Manfred
    Ulm, Bernhard
    Podtschaske, Armin Horst
    Kagerbauer, Simone Maria
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [33] A Prediction Model for Osteoporosis Risk Using a Machine-Learning Approach and Its Validation in a Large Cohort
    Wu, Xuangao
    Park, Sunmin
    JOURNAL OF KOREAN MEDICAL SCIENCE, 2023, 38 (21)
  • [34] Enabling personalized perioperative risk prediction by using a machine-learning model based on preoperative data
    Martin Graeßner
    Bettina Jungwirth
    Elke Frank
    Stefan Josef Schaller
    Eberhard Kochs
    Kurt Ulm
    Manfred Blobner
    Bernhard Ulm
    Armin Horst Podtschaske
    Simone Maria Kagerbauer
    Scientific Reports, 13
  • [35] Hybrid optical turbulence models using machine-learning and local measurements
    Jellen, Christopher
    Nelson, Charles
    Burkhardt, John
    Brownell, Cody
    APPLIED OPTICS, 2023, 62 (18) : 4880 - 4890
  • [36] Using comprehensive machine-learning models to classify complex morphological characters
    Teng, Dequn
    Li, Fengyuan
    Zhang, Wei
    ECOLOGY AND EVOLUTION, 2021, 11 (15): : 10421 - 10431
  • [37] Prediction of Post-Intubation Tachycardia Using Machine-Learning Models
    Kim, Hanna
    Jeong, Young-Seob
    Kang, Ah Reum
    Jung, Woohyun
    Chung, Yang Hoon
    Koo, Bon Sung
    Kim, Sang Hyun
    APPLIED SCIENCES-BASEL, 2020, 10 (03):
  • [38] Construction of a Colorectal Cancer Prognostic Risk Model and Screening of Prognostic Risk Genes Using Machine-Learning Algorithms
    Du, Xuezhi
    Qi, Han
    Ji, Wenbin
    Li, Peiyuan
    Hua, Run
    Hu, Wenliang
    Qi, Feng
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022
  • [39] A machine-learning approach to model risk and protective factors of vulnerability to depression
    Liu, June M.
    Gao, Mengxia
    Zhang, Ruibin
    Wong, Nichol M. L.
    Wu, Jingsong
    Chan, Chetwyn C. H.
    Lee, Tatia M. C.
    JOURNAL OF PSYCHIATRIC RESEARCH, 2024, 175 : 374 - 380
  • [40] Advanced geostatistical and machine-learning models for spatial data analysis of radioactively contaminated regions
    Kanevski, M
    Demyanov, V
    Pozdnukhov, A
    Parkin, R
    Savelieva, E
    Timonin, V
    Maignan, M
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2003, : 137 - 149