Normalized solutions for a class of nonlinear Choquard equations

被引:51
|
作者
Bartsch, Thomas [1 ]
Liu, Yanyan [2 ]
Liu, Zhaoli [2 ]
机构
[1] Justus Liebig Univ Giessen, Math Inst, Arndstr 2, D-35392 Giessen, Germany
[2] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Choquard equation; Stretched functional; Normalized solution; SCHRODINGER-POISSON; PRESCRIBED NORM; EXISTENCE; MULTIPLICITY;
D O I
10.1007/s42985-020-00036-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of a least energy solution to the problem - Delta u - ( I alpha & lowast; F ( u ) ) f ( u ) = lambda u in R N , integral R N u 2 ( x ) d x = a 2 , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\Delta u-(I_{\alpha }*F(u))f(u)=\lambda u\ \text { in }\ {\mathbb {R}}<^>{N},\quad \int _{{\mathbb {R}}<^>N}u<^>2(x)dx = a<^>2, \end{aligned}$$\end{document} where N >= 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 1$$\end{document} , alpha is an element of ( 0 , N ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,N)$$\end{document} , F ( s ) : = integral 0 s f ( t ) d t \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(s):=\int _{0}<^>{s}f(t)dt$$\end{document} , and I alpha : R N -> R \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{\alpha }:{\mathbb {R}}<^>{N}\rightarrow {\mathbb {R}}$$\end{document} is the Riesz potential. If f is odd in u then we prove the existence of infinitely many normalized solutions.
引用
收藏
页数:25
相关论文
共 50 条
  • [11] Multiplicity of normalized semi-classical states for a class of nonlinear Choquard equations
    Wu, Jinxia
    He, Xiaoming
    ADVANCES IN NONLINEAR ANALYSIS, 2024, 13 (01)
  • [12] NORMALIZED SOLUTIONS FOR KIRCHHOFF EQUATIONS WITH CHOQUARD NONLINEARITY
    Wang, Zhi-Jie
    Sun, Hong-Rui
    Liu, Jianlun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2025, 45 (04) : 1335 - 1365
  • [13] NORMALIZED SOLUTIONS FOR CHOQUARD EQUATIONS WITH GENERAL NONLINEARITIES
    Yuan, Shuai
    Chen, Sitong
    Tang, Xianhua
    ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (01): : 291 - 309
  • [14] Existence of solutions for a class of nonlinear Choquard equations with critical growth
    Ao, Yong
    APPLICABLE ANALYSIS, 2021, 100 (03) : 465 - 481
  • [15] Normalized solutions for the Choquard equations with critical nonlinearities
    Gao, Qian
    He, Xiaoming
    ADVANCES IN NONLINEAR ANALYSIS, 2024, 13 (01)
  • [16] Normalized Ground State Solutions for Nonautonomous Choquard Equations
    Luo, Huxiao
    Wang, Lushun
    FRONTIERS OF MATHEMATICS, 2023, 18 (06): : 1269 - 1294
  • [17] Normalized Ground State Solutions for Nonautonomous Choquard Equations
    Huxiao Luo
    Lushun Wang
    Frontiers of Mathematics, 2023, 18 : 1269 - 1294
  • [18] Nonrelativistic limit of normalized solutions to a class of nonlinear Dirac equations
    Chen, Pan
    Ding, Yanheng
    Guo, Qi
    Wang, Hua-Yang
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (04)
  • [19] Normalized solutions to the nonlinear Choquard equations with Hardy-Littlewood-Sobolev upper critical exponent
    Shang, Xudong
    Ma, Pei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 521 (02)
  • [20] Normalized ground states to the nonlinear Choquard equations with local perturbations
    Shang, Xudong
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (03): : 1551 - 1573