Application of Hilbert’s Projective Metric on Symmetric Cones

被引:0
|
作者
Khalid Koufany
机构
[1] Université Henri Poincaré (Nancy 1),Institut Elie Cartan, UMR 7502 (UHP–CNRS–INRIA)
来源
Acta Mathematica Sinica | 2006年 / 22卷
关键词
Hilbert’s projective metric; Symmetric cone; 17C15; 32M15;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω be a symmetric cone. In this note, we introduce Hilbert’s projective metric on Ω in terms of Jordan algebras and we apply it to prove that, given a linear invertible transformation g such that g(Ω) = Ω and a real number p, |p| > 1, there exists a unique element x ∈ Ω satisfying g(x) = xp.
引用
收藏
页码:1467 / 1472
页数:5
相关论文
共 50 条
  • [21] Gaddum's test for symmetric cones
    Orlitzky, Michael
    JOURNAL OF GLOBAL OPTIMIZATION, 2021, 79 (04) : 927 - 940
  • [22] Gaddum’s test for symmetric cones
    Michael Orlitzky
    Journal of Global Optimization, 2021, 79 : 927 - 940
  • [23] Algebraic boundaries of Hilbert's SOS cones
    Blekherman, Grigoriy
    Hauenstein, Jonathan
    Ottem, John Christian
    Ranestad, Kristian
    Sturmfels, Bernd
    COMPOSITIO MATHEMATICA, 2012, 148 (06) : 1717 - 1735
  • [24] POSITIVE ALMOST PERIODIC SOLUTIONS FOR THE HEMATOPOIESIS MODEL VIA THE HILBERT PROJECTIVE METRIC
    Hattab, Hechmi
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 95 (01) : 84 - 93
  • [25] Directional Holder Metric Subregularity and Application to Tangent Cones
    Huynh Van Ngai
    Nguyen Huu Tron
    Phan Nhat Tinh
    JOURNAL OF CONVEX ANALYSIS, 2017, 24 (02) : 417 - 457
  • [26] Closed formula for the metric in the Hilbert space of a PT-symmetric model
    Krejcirik, D.
    Bila, H.
    Znojil, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (32): : 10143 - 10153
  • [27] Cones of Hilbert Functions
    Boij, Mats
    Smith, Gregory G.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (20) : 10314 - 10338
  • [28] An extension of Chubanov's algorithm to symmetric cones
    Lourenco, Bruno F.
    Kitahara, Tomonari
    Muramatsu, Masakazu
    Tsuchiya, Takashi
    MATHEMATICAL PROGRAMMING, 2019, 173 (1-2) : 117 - 149
  • [29] An extension of Chubanov’s algorithm to symmetric cones
    Bruno F. Lourenço
    Tomonari Kitahara
    Masakazu Muramatsu
    Takashi Tsuchiya
    Mathematical Programming, 2019, 173 : 117 - 149
  • [30] On a Ricci Quarter-Symmetric Metric Recurrent Connection and a Projective Ricci Quarter-Symmetric Metric Recurrent Connection in a Riemannian Manifold
    Zhao, Di
    Jen, Cholyong
    Ho, Talyun
    FILOMAT, 2020, 34 (03) : 795 - 806