Unsupervised Binary Representation Learning with Deep Variational Networks

被引:4
|
作者
Yuming Shen
Li Liu
Ling Shao
机构
[1] Inception Institute of Artificial Intelligence,
来源
关键词
Hashing; Unsupervised learning; Deep learning; Image retrieval;
D O I
暂无
中图分类号
学科分类号
摘要
Learning to hash is regarded as an efficient approach for image retrieval and many other big-data applications. Recently, deep learning frameworks are adopted for image hashing, suggesting an alternative way to formulate the encoding function other than the conventional projections. Although deep learning has been proved to be successful in supervised hashing, existing unsupervised deep hashing techniques still cannot produce leading performance compared with the non-deep methods, as it is hard to unveil the intrinsic structure of the whole sample space by simply regularizing the output codes within each single training batch. To tackle this problem, in this paper, we propose a novel unsupervised deep hashing model, named deep variational binaries (DVB). The conditional auto-encoding variational Bayesian networks are introduced in this work to exploit the feature space structure of the training data using the latent variables. Integrating the probabilistic inference process with hashing objectives, the proposed DVB model estimates the statistics of data representations, and thus produces compact binary codes. Experimental results on three benchmark datasets, i.e., CIFAR-10, SUN-397 and NUS-WIDE, demonstrate that DVB outperforms state-of-the-art unsupervised hashing methods with significant margins.
引用
收藏
页码:1614 / 1628
页数:14
相关论文
共 50 条
  • [31] Unsupervised representation learning based on the deep multi-view ensemble learning
    Maryam Koohzadi
    Nasrollah Moghadam Charkari
    Foad Ghaderi
    Applied Intelligence, 2020, 50 : 562 - 581
  • [32] Unsupervised representation learning based on the deep multi-view ensemble learning
    Koohzadi, Maryam
    Charkari, Nasrollah Moghadam
    Ghaderi, Foad
    APPLIED INTELLIGENCE, 2020, 50 (02) : 562 - 581
  • [33] Sampling strategies in Siamese Networks for unsupervised speech representation learning
    Riad, Rachid
    Dancette, Corentin
    Karadayi, Julien
    Zeghidour, Neil
    Schatz, Thomas
    Dupoux, Emmanuel
    19TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2018), VOLS 1-6: SPEECH RESEARCH FOR EMERGING MARKETS IN MULTILINGUAL SOCIETIES, 2018, : 2658 - 2662
  • [34] Theoretical Notes on Unsupervised Learning in Deep Neural Networks
    Golovko, Vladimir
    Kroshchanka, Aliaksandr
    PROCEEDINGS OF THE 8TH INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL INTELLIGENCE, VOL 3: NCTA, 2016, : 91 - 96
  • [35] Variational Deep Representation Learning for Cross-Modal Retrieval
    Yang, Chen
    Deng, Zongyong
    Li, Tianyu
    Liu, Hao
    Liu, Libo
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2021, PT II, 2021, 13020 : 498 - 510
  • [36] Variational approach to unsupervised learning
    Shah, Swapnil Nitin
    JOURNAL OF PHYSICS COMMUNICATIONS, 2019, 3 (07):
  • [37] Deep Unsupervised Binary Coding Networks for Multivariate Time Series Retrieval
    Zhu, Dixian
    Song, Dongjin
    Chen, Yuncong
    Lumezanu, Cristian
    Cheng, Wei
    Zong, Bo
    Ni, Jingchao
    Mizoguchi, Takehiko
    Yang, Tianbao
    Chen, Haifeng
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 1403 - 1410
  • [38] Transferable Representation Learning with Deep Adaptation Networks
    Long, Mingsheng
    Cao, Yue
    Cao, Zhangjie
    Wang, Jianmin
    Jordan, Michael
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (12) : 3071 - 3085
  • [39] Learning to Optimize with Unsupervised Learning: Training Deep Neural Networks for URLLC
    Sun, Chengjian
    Yang, Chenyang
    2019 IEEE 30TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2019, : 451 - 457
  • [40] Variational Graph Convolutional Networks for Dynamic Graph Representation Learning
    Mir, Aabid A.
    Zuhairi, Megat F.
    Musa, Shahrulniza
    Alanazi, Meshari H.
    Namoun, Abdallah
    IEEE ACCESS, 2024, 12 : 161697 - 161717