On the Coefficients of Certain Subclasses of Harmonic Univalent Mappings with Nonzero Pole

被引:0
|
作者
Bappaditya Bhowmik
Santana Majee
机构
[1] Indian Institute of Technology Kharagpur,Department of Mathematics
关键词
Harmonic univalent mappings; Taylor coefficients; Concave univalent functions; 31A05; 30C45; 30C50; 30C55;
D O I
暂无
中图分类号
学科分类号
摘要
Let Co(p), p∈(0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (0,1]$$\end{document} be the class of all meromorphic univalent functions φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} defined in the open unit disc D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {D}}$$\end{document} with normalizations φ(0)=0=φ′(0)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (0)=0=\varphi '(0)-1$$\end{document} and having simple pole at z=p∈(0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z=p\in (0,1]$$\end{document} such that the complement of φ(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi ({\mathbb {D}})$$\end{document} is a convex domain. The class Co(p) is called the class of concave univalent functions. Let SH0(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{H}^{0}(p)$$\end{document} be the class of all sense preserving univalent harmonic mappings f defined on D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {D}}$$\end{document} having simple pole at z=p∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z=p\in (0,1)$$\end{document} with the normalizations f(0)=fz(0)-1=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(0)=f_{z}(0)-1=0$$\end{document} and fz¯(0)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{\bar{z}}(0)=0$$\end{document}. We first derive the exact regions of variability for the second Taylor coefficients of h where f=h+g¯∈SH0(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=h+\overline{g}\in S_{H}^{0}(p)$$\end{document} with h-g∈Co(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h-g\in Co(p)$$\end{document}. Next we consider the class SH0(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{H}^{0}(1)$$\end{document} of all sense preserving univalent harmonic mappings f in D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {D}}$$\end{document} having simple pole at z=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z=1$$\end{document} with the same normalizations as above. We derive exact regions of variability for the coefficients of h where f=h+g¯∈SH0(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=h+\overline{g}\in S_{H}^{0}(1)$$\end{document} satisfying h-e2iθg∈Co(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h-e^{2i\theta }g\in Co(1)$$\end{document} with dilatation g′(z)/h′(z)=e-2iθz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g'(z)/h'(z)=e^{-2i\theta }z$$\end{document}, for some θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}, 0≤θ<π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \theta <\pi $$\end{document}.
引用
收藏
页码:1041 / 1053
页数:12
相关论文
共 50 条
  • [11] Certain Subclasses of Harmonic Univalent Functions Defined by Subordination
    Cakmak, S.
    Yalcin, S.
    Altinkaya, S.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2020, 44 (01) : 43 - 56
  • [12] Bohr phenomenon for certain subclasses of harmonic mappings
    Allu, Vasudevarao
    Halder, Himadri
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 173
  • [13] Certain Subclasses of Harmonic Univalent Functions Defined by Convolution and Subordination
    Shuhai LI
    Huo TANG
    En AO
    Journal of Mathematical Research with Applications, 2019, 39 (01) : 31 - 42
  • [14] Constants and Characterization for Certain Classes of Univalent Harmonic Mappings
    Ponnusamy, Saminathan
    Kaliraj, Anbareeswaran Sairam
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (03) : 647 - 665
  • [15] LINEAR COMBINATIONS OF UNIVALENT HARMONIC MAPPINGS WITH COMPLEX COEFFICIENTS
    Khurana, Deepali
    Kumar, Raj
    Gupta, Sushma
    Singh, Sukhjit
    MATEMATICKI VESNIK, 2022, 74 (03): : 189 - 196
  • [16] Variability regions for certain families of harmonic univalent mappings
    Ponnusamy, S.
    Yamamoto, H.
    Yanagihara, H.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (01) : 23 - 34
  • [17] Constants and Characterization for Certain Classes of Univalent Harmonic Mappings
    Saminathan Ponnusamy
    Anbareeswaran Sairam Kaliraj
    Mediterranean Journal of Mathematics, 2015, 12 : 647 - 665
  • [18] Geometric properties and sections for certain subclasses of harmonic mappings
    Liu, Ming-Sheng
    Yang, Li-Mei
    MONATSHEFTE FUR MATHEMATIK, 2019, 190 (02): : 353 - 387
  • [19] Geometric properties and sections for certain subclasses of harmonic mappings
    Ming-Sheng Liu
    Li-Mei Yang
    Monatshefte für Mathematik, 2019, 190 : 353 - 387
  • [20] Estimating coefficients for certain subclasses of meromorphic and bi-univalent functions
    Sakar, F. Muge
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,