On the Coefficients of Certain Subclasses of Harmonic Univalent Mappings with Nonzero Pole

被引:0
|
作者
Bappaditya Bhowmik
Santana Majee
机构
[1] Indian Institute of Technology Kharagpur,Department of Mathematics
关键词
Harmonic univalent mappings; Taylor coefficients; Concave univalent functions; 31A05; 30C45; 30C50; 30C55;
D O I
暂无
中图分类号
学科分类号
摘要
Let Co(p), p∈(0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (0,1]$$\end{document} be the class of all meromorphic univalent functions φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} defined in the open unit disc D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {D}}$$\end{document} with normalizations φ(0)=0=φ′(0)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (0)=0=\varphi '(0)-1$$\end{document} and having simple pole at z=p∈(0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z=p\in (0,1]$$\end{document} such that the complement of φ(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi ({\mathbb {D}})$$\end{document} is a convex domain. The class Co(p) is called the class of concave univalent functions. Let SH0(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{H}^{0}(p)$$\end{document} be the class of all sense preserving univalent harmonic mappings f defined on D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {D}}$$\end{document} having simple pole at z=p∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z=p\in (0,1)$$\end{document} with the normalizations f(0)=fz(0)-1=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(0)=f_{z}(0)-1=0$$\end{document} and fz¯(0)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{\bar{z}}(0)=0$$\end{document}. We first derive the exact regions of variability for the second Taylor coefficients of h where f=h+g¯∈SH0(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=h+\overline{g}\in S_{H}^{0}(p)$$\end{document} with h-g∈Co(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h-g\in Co(p)$$\end{document}. Next we consider the class SH0(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{H}^{0}(1)$$\end{document} of all sense preserving univalent harmonic mappings f in D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {D}}$$\end{document} having simple pole at z=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z=1$$\end{document} with the same normalizations as above. We derive exact regions of variability for the coefficients of h where f=h+g¯∈SH0(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=h+\overline{g}\in S_{H}^{0}(1)$$\end{document} satisfying h-e2iθg∈Co(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h-e^{2i\theta }g\in Co(1)$$\end{document} with dilatation g′(z)/h′(z)=e-2iθz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g'(z)/h'(z)=e^{-2i\theta }z$$\end{document}, for some θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}, 0≤θ<π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \theta <\pi $$\end{document}.
引用
收藏
页码:1041 / 1053
页数:12
相关论文
共 50 条
  • [1] On the Coefficients of Certain Subclasses of Harmonic Univalent Mappings with Nonzero Pole
    Bhowmik, Bappaditya
    Majee, Santana
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2021, 52 (04): : 1041 - 1053
  • [2] On harmonic univalent mappings with nonzero pole
    Bhowmik, Bappaditya
    Majee, Santana
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 482 (01)
  • [3] ON CERTAIN SUBCLASSES OF UNIVALENT p-HARMONIC MAPPINGS
    Qiao, J.
    Chen, J.
    Shi, M.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (02) : 429 - 451
  • [4] CONSTRUCTION OF SUBCLASSES OF UNIVALENT HARMONIC MAPPINGS
    Nagpal, Sumit
    Ravichandran, V.
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (03) : 567 - 592
  • [5] Coefficients of univalent harmonic mappings
    Saminathan Ponnusamy
    Anbareeswaran Sairam Kaliraj
    Victor V. Starkov
    Monatshefte für Mathematik, 2018, 186 : 453 - 470
  • [6] Coefficients of univalent harmonic mappings
    Ponnusamy, Saminathan
    Kaliraj, Anbareeswaran Sairam
    Starkov, Victor V.
    MONATSHEFTE FUR MATHEMATIK, 2018, 186 (03): : 453 - 470
  • [7] Certain subclasses of analytic univalent functions generated by harmonic univalent functions
    Joshi, Santosh
    Shelake, Girish
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2013, 58 (03): : 345 - 354
  • [8] Properties for certain subclasses of analytic functions with nonzero coefficients
    Lee, Hyo Jeong
    Cho, Nak Eun
    Owa, Shigeyoshi
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [9] Properties for certain subclasses of analytic functions with nonzero coefficients
    Hyo Jeong Lee
    Nak Eun Cho
    Shigeyoshi Owa
    Journal of Inequalities and Applications, 2014
  • [10] A CERTAIN CONVOLUTION APPROACH FOR SUBCLASSES OF UNIVALENT HARMONIC FUNCTIONS
    El-Ashwaw, R. M.
    Aouf, M. K.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (03) : 739 - 747