The complexity of crossed products

被引:0
|
作者
Ling Liu
Bing-Liang Shen
机构
[1] Zhejiang Normal University,Shanghai University of Finance and Economics
[2] Zhejiang College,undefined
来源
Mathematical Notes | 2013年 / 93卷
关键词
crossed product; complexity; trivial module; semisimple algebra; Sweedler’s 4-dimensional Hopf algebra;
D O I
暂无
中图分类号
学科分类号
摘要
Let H be a finite-dimensional Hopf algebra, let A be a finite-dimensional algebra measured by H, and let A #σH be a crossed product. In this paper, we first show that if H is semisimple as well as its dual H*, then the complexity of A #σH is equal to that of A. Furthermore, we prove that the complexity of a finite-dimensional Hopf algebra H is equal to the complexity of the trivial module Hk. As an application, we prove that the complexity of Sweedler’s 4-dimensional Hopf algebra H4 is equal to 1.
引用
收藏
页码:426 / 430
页数:4
相关论文
共 50 条
  • [41] Lie properties of crossed products
    Bovdi, Adalbert
    Grishkov, Alexander
    JOURNAL OF ALGEBRA, 2008, 320 (09) : 3447 - 3460
  • [42] Crossed products for matrix rings
    Hoshino, Mitsuo
    Kameyama, Noritsugu
    Koga, Hirotaka
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (10) : 4176 - 4186
  • [43] Simplicity of crossed products by endomorphisms
    Gerard J. Murphy
    Integral Equations and Operator Theory, 2002, 42 : 90 - 98
  • [44] Crossed products by minimal homeomorphisms
    Lin, Huaxin
    Phillips, N. Christopher
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 641 : 95 - 122
  • [45] Crossed Products in Weak Contexts
    Alonso Alvarez, J. N.
    Fernandez Vilaboa, J. M.
    Gonzalez Rodriguez, R.
    Rodriguez Raposo, A. B.
    APPLIED CATEGORICAL STRUCTURES, 2010, 18 (03) : 231 - 258
  • [46] Nil ideals of crossed products
    Dimitrova, JM
    COMMUNICATIONS IN ALGEBRA, 2003, 31 (09) : 4445 - 4453
  • [47] Modules over crossed products
    Jaikin-Zapirain, A
    JOURNAL OF ALGEBRA, 1999, 215 (01) : 114 - 134
  • [48] HOMOLOGIES OF CROSSED TENSOR PRODUCTS
    SMIRNOV, VA
    DOKLADY AKADEMII NAUK SSSR, 1975, 222 (05): : 1041 - 1044
  • [49] A generalization of Hopf crossed products
    Schauenburg, P
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (10) : 4779 - 4801
  • [50] SEMIPRIME CROSSED-PRODUCTS
    PASSMAN, DS
    HOUSTON JOURNAL OF MATHEMATICS, 1985, 11 (02): : 257 - 267