共 50 条
Visualization of Synthetic Vascular Smooth Muscle Cells in Atherosclerotic Carotid Rat Arteries by F-18 FDG PET
被引:0
|作者:
Kisoo Pahk
Chanmin Joung
Se-Mi Jung
Hwa Young Song
Ji Yong Park
Jung Woo Byun
Yun-Sang Lee
Jin Chul Paeng
Chunsook Kim
Sungeun Kim
Won-Ki Kim
机构:
[1] Korea University College of Medicine,Department of Neuroscience
[2] Korea University Anam Hospital,Department of Nuclear Medicine
[3] Seoul National University College of Medicine,Department of Nuclear Medicine
[4] Seoul National University Graduate School,Department of Biomedical Sciences
[5] Graduate School of Convergence Science and Technology,Department of Molecular Medicine and Biopharmaceutical Sciences
[6] and College of Medicine,Department of Nuclear Medicine
[7] Seoul National University,Department of Nursing
[8] Seoul National University Hospital,undefined
[9] Kyungdong University,undefined
来源:
Scientific Reports
|
/
7卷
关键词:
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Synthetic vascular smooth muscle cells (VSMCs) play important roles in atherosclerosis, in-stent restenosis, and transplant vasculopathy. We investigated the synthetic activity of VSMCs in the atherosclerotic carotid artery using 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET). Atherosclerosis was induced in rats by partial ligation of the right carotid artery coupled with an atherogenic diet and vitamin D injections (2 consecutive days, 600,000 IU/day). One month later, rats were imaged by F-18 FDG PET. The atherosclerotic right carotid arteries showed prominent luminal narrowing with neointimal hyperplasia. The regions with neointimal hyperplasia were composed of α-smooth muscle actin-positive cells with decreased expression of smooth muscle myosin heavy chain. Surrogate markers of synthetic VSMCs such as collagen type III, cyclophilin A, and matrix metallopeptidase-9 were increased in neointima region. However, neither macrophages nor neutrophils were observed in regions with neointimal hyperplasia. F-18 FDG PET imaging and autoradiography showed elevated FDG uptake into the atherosclerotic carotid artery. The inner vessel layer showed higher tracer uptake than the outer layer. Consistently, the expression of glucose transporter 1 was highly increased in neointima. The present results indicate that F-18 FDG PET may be a useful tool for evaluating synthetic activities of VSMCs in vascular remodeling disorders.
引用
收藏
相关论文