Asymptotic properties of wavelet estimators in heteroscedastic semiparametric model based on negatively associated innovations

被引:0
|
作者
Xueping Hu
Jinbiao Zhong
Jiashun Ren
Bing Shi
Keming Yu
机构
[1] Anqing Normal University,School of Mathematics and Computation Science
[2] Brunel University,Department of Mathematics
来源
Journal of Inequalities and Applications | / 2019卷
关键词
Semiparametric regression model; Wavelet estimator; Berry–Esséen bound; Negatively associated random error; Consistency; 62G05; 60F05;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the heteroscedastic semiparametric regression model yi=xiβ+g(ti)+εi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$y_{i}=x_{i}\beta+g(t_{i})+\varepsilon_{i}$\end{document}, i=1,2,…,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i=1, 2, \ldots, n$\end{document}, where β is an unknown slope parameter, εi=σiei\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varepsilon_{i}=\sigma_{i}e_{i}$\end{document}, σi2=f(ui)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma^{2}_{i}=f(u_{i})$\end{document}, (xi,ti,ui)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(x_{i},t_{i},u_{i})$\end{document} are nonrandom design points, yi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$y_{i}$\end{document} are the response variables, f and g are unknown functions defined on the closed interval [0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[0,1]$\end{document}, random errors {ei}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{e_{i} \}$\end{document} are negatively associated (NA) random variables with zero means. Whereas kernel estimators of β, g, and f have attracted a lot of attention in the literature, in this paper, we investigate their wavelet estimators and derive the strong consistency of these estimators under NA error assumption. At the same time, we also obtain the Berry–Esséen type bounds of the wavelet estimators of β and g.
引用
收藏
相关论文
共 50 条