Asymptotic properties of wavelet estimators in heteroscedastic semiparametric model based on negatively associated innovations

被引:0
|
作者
Xueping Hu
Jinbiao Zhong
Jiashun Ren
Bing Shi
Keming Yu
机构
[1] Anqing Normal University,School of Mathematics and Computation Science
[2] Brunel University,Department of Mathematics
关键词
Semiparametric regression model; Wavelet estimator; Berry–Esséen bound; Negatively associated random error; Consistency; 62G05; 60F05;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the heteroscedastic semiparametric regression model yi=xiβ+g(ti)+εi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$y_{i}=x_{i}\beta+g(t_{i})+\varepsilon_{i}$\end{document}, i=1,2,…,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i=1, 2, \ldots, n$\end{document}, where β is an unknown slope parameter, εi=σiei\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varepsilon_{i}=\sigma_{i}e_{i}$\end{document}, σi2=f(ui)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma^{2}_{i}=f(u_{i})$\end{document}, (xi,ti,ui)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(x_{i},t_{i},u_{i})$\end{document} are nonrandom design points, yi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$y_{i}$\end{document} are the response variables, f and g are unknown functions defined on the closed interval [0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[0,1]$\end{document}, random errors {ei}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{e_{i} \}$\end{document} are negatively associated (NA) random variables with zero means. Whereas kernel estimators of β, g, and f have attracted a lot of attention in the literature, in this paper, we investigate their wavelet estimators and derive the strong consistency of these estimators under NA error assumption. At the same time, we also obtain the Berry–Esséen type bounds of the wavelet estimators of β and g.
引用
收藏
相关论文
共 50 条
  • [1] Asymptotic properties of wavelet estimators in heteroscedastic semiparametric model based on negatively associated innovations
    Hu, Xueping
    Zhong, Jinbiao
    Ren, Jiashun
    Shi, Bing
    Yu, Keming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
  • [2] Asymptotic Normality for Wavelet Estimators in Heteroscedastic Semiparametric Model with Random Errors
    DING Liwang
    CHEN Ping
    ZHANG Qiang
    LI Yongming
    Journal of Systems Science & Complexity, 2020, 33 (04) : 1212 - 1243
  • [3] Asymptotic Normality for Wavelet Estimators in Heteroscedastic Semiparametric Model with Random Errors
    Ding, Liwang
    Chen, Ping
    Zhang, Qiang
    Li, Yongming
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2020, 33 (04) : 1212 - 1243
  • [4] Asymptotic Normality for Wavelet Estimators in Heteroscedastic Semiparametric Model with Random Errors
    Liwang Ding
    Ping Chen
    Qiang Zhang
    Yongming Li
    Journal of Systems Science and Complexity, 2020, 33 : 1212 - 1243
  • [5] The asymptotic properties for the estimators in a semiparametric regression model based on m-asymptotic negatively associated errors
    Shao, Wanyue
    Ye, Yuxin
    Wang, Miaomaio
    Wang, Xuejun
    FILOMAT, 2023, 37 (08) : 2437 - 2454
  • [6] Asymptotic Properties of Wavelet Estimators in a Semiparametric Regression Model with Censored Data
    HU Hongchang 1
    2. School of Mathematics and Statistics
    Wuhan University Journal of Natural Sciences, 2012, 17 (04) : 290 - 296
  • [7] The consistency of the estimators in semiparametric regression model based on m-asymptotic negatively associated errors
    Feng, Jiayi
    Shen, Aiting
    Wang, Dantong
    Wang, Xuejun
    STOCHASTIC MODELS, 2025, 41 (01) : 58 - 84
  • [8] Asymptotic properties for the estimators in heteroscedastic semiparametric EV models with α-mixing errors
    Xi, Mengmei
    Wang, Rui
    Yu, Wei
    Shen, Yan
    Wang, Xuejun
    STATISTICS, 2020, 54 (06) : 1232 - 1254
  • [9] The asymptotic properties of the estimators in a semiparametric regression model
    Xuejun Wang
    Meimei Ge
    Yi Wu
    Statistical Papers, 2019, 60 : 2087 - 2108
  • [10] The asymptotic properties of the estimators in a semiparametric regression model
    Wang, Xuejun
    Ge, Meimei
    Wu, Yi
    STATISTICAL PAPERS, 2019, 60 (06) : 2087 - 2108