Industrial applications of the aggregation of block copolymers in supercritical CO2: a SANS study

被引:0
|
作者
F. Lo Celso
A. Triolo
F. Triolo
J. McClain
J.M. Desimone
R.K. Heenan
H. Amenitsch
R. Triolo
机构
[1] University of Palermo,
[2] Department of Physical Chemistry,undefined
[3] viale delle Scienze,undefined
[4] 90128 Palermo,undefined
[5] Italy,undefined
[6] HMI-BENSC,undefined
[7] 14109 Berlin,undefined
[8] Germany,undefined
[9] Mount Sinai School of Medicine,undefined
[10] New York,undefined
[11] NY 10029,undefined
[12] USA,undefined
[13] Department of Chemistry,undefined
[14] University of North Carolina,undefined
[15] Chapel Hill,undefined
[16] NC 27599-3290,undefined
[17] USA,undefined
[18] Rutherford Appleton Laboratory,undefined
[19] Chilton OX11 0QX,undefined
[20] UK,undefined
[21] Sincrotrone Elettra,undefined
[22] 34012 Trieste,undefined
[23] Italy,undefined
来源
Applied Physics A | 2002年 / 74卷
关键词
PACS: 61.12.Ex; 61.25.Hq; 64.75.+g;
D O I
暂无
中图分类号
学科分类号
摘要
Industrial applications of supercritical carbon dioxide (scCO2) rely upon the rather selective and easily adjustable solvent ability of CO2. CO2 near the critical point is a poor solvent for high molecular weight (HMW) hydrocarbon polymers, while it is a very good solvent for amorphous fluorinated polymers. By increasing the pressure, CO2 becomes a good solvent even for HMW hydrogenated chains. Specially engineered amphiphilic di-block copolymers, with CO2-philic and CO2-phobic portions, are expected to undergo trough a monomer–aggregate transition when the solvent density of the scCO2 changes. Here small-angle neutron scattering (SANS) results are reported for a block copolymer dissolved in liquid and supercritical CO2. Time-resolved small-angle X-ray scattering (TR-SAXS) results are also reported.
引用
收藏
页码:s1427 / s1429
相关论文
共 50 条
  • [21] Supercritical CO2 applications in microfluidic systems
    Kazan, Aslihan
    MICROFLUIDICS AND NANOFLUIDICS, 2022, 26 (09)
  • [22] Supercritical CO2 applications in BEOL cleaning
    Matz, PD
    Reidy, RF
    ULTRA CLEAN PROCESSING OF SILICON SURFACES VII, 2005, 103-104 : 315 - 322
  • [23] Supercritical CO2 applications in microfluidic systems
    Aslihan Kazan
    Microfluidics and Nanofluidics, 2022, 26
  • [24] Supercritical CO2 treatments for semiconductor applications
    Gangopadhyay, S
    Lubguban, JA
    Lahlouh, B
    Sivaraman, G
    Biswas, K
    Rajagopalan, T
    Biswas, N
    Kim, HC
    Volksen, W
    Miller, RD
    MATERIALS, TECHNOLOGY AND RELIABILITY FOR ADVANCED INTERCONNECTS AND LOW-K DIELECTRICS-2004, 2004, 812 : 37 - 42
  • [25] Aggregation of CO2 and Organic Liquid Molecules at Near Critical and Supercritical Condition of CO2
    Yang, Zihao
    Li, Mingyuan
    Peng, Bo
    Lin, Meiqin
    Dong, Zhaoxia
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2014, 35 (02) : 168 - 174
  • [26] Tuning of mass transport properties of multi-block copolymers for CO2 capture applications
    Reijerkerk, Sander R.
    Arun, Araichimani
    Gaymans, Reinoud J.
    Nijmeijer, Kitty
    Wessling, Matthias
    JOURNAL OF MEMBRANE SCIENCE, 2010, 359 (1-2) : 54 - 63
  • [27] Shared study of supercritical CO2
    不详
    CHEMICAL ENGINEERING PROGRESS, 2002, 98 (02) : 18 - 18
  • [28] Supercritical CO2: Properties and Technological Applications - A Review
    Polikhronidi Nikolai
    Batyrova Rabiyat
    Aliev Aslan
    Abdulagatov Ilmutdin
    Journal of Thermal Science, 2019, 28 : 394 - 430
  • [29] Fundamentals and applications of supercritical CO2 extrusion technology
    Dogan, E
    Chen, KH
    Rizvi, SSH
    NOVEL PROCESSES AND CONTROL TECHNOLOGIES IN THE FOOD INDUSTRY, 2001, 338 : 37 - 48
  • [30] An overview of supercritical CO2 applications in microelectronics processing
    Weibel, GL
    Ober, CK
    MICROELECTRONIC ENGINEERING, 2003, 65 (1-2) : 145 - 152