Brewery industrial wastewater treatment through mesocosm horizontal subsurface flow constructed wetland

被引:7
|
作者
Angassa K. [1 ]
Assefa B. [2 ]
Kefeni K.K. [3 ]
Nkambule T.T.I. [3 ]
Fito J. [3 ]
机构
[1] Environmental Engineering Department, Addis Ababa Science, and Technology University, Addis Ababa
[2] Chemical and Bioengineering Department, Addis Ababa Institute of Technology, Addis Ababa
[3] Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg
关键词
Ecological engineering; Effluent; Nutrients; Organic matter; Phytoremediation; Water pollution;
D O I
10.1007/s10669-022-09849-z
中图分类号
学科分类号
摘要
The brewing industry discharges huge amounts of wastewater, which contains a high concentration of organic and nutrient-rich components. Therefore, this study aimed to evaluate the treatment performance of Horizontal-Subsurface-Flow-Constructed Wetland Systems (HSSFCWs) for brewery wastewater remediation. AmesocosmHSSFCWs was constructed and the inside of each unit was covered with high-density polyethylene and filled with gravel. The HSSFCWs were planted with Colocasia gigantean, Phragmites karka, and Canna indica while the control treatment unit was left unplanted. The HSSFCWs were operated with a hydraulic loading rate of 21.7 Lm−2 day−1 and a hydraulic residence time of 7 days. The removal efficiencies of the primary clarifier for COD, BOD5, and TSS were found to be 65.5%, 67.0%, and 98.0%, respectively. The treatment performances of the HSSFCWs with P. karka, C. gigantean and C. indica were COD 80.3%, 79.0%, and 73.6%; BOD5 75.4%, 74.0% and 73.6%; TN 84.0%, 77.0% and 64.0%; TP 71.0%, 69.0% and 63.0%; and PO43− 85.7%, 80.0% and 79.0%, respectively. Compared to the other two treatment systems, the species P. karka achieved the best treatment performance in terms of the removal of organic matter and nutrients. In general, it can be concluded that the wetland systems planted with P. karka, C. gigantean, and C. indica have the potential to remove organic matter and nutrients from brewery wastewater. Therefore, this finding is encouraging to scale up this wastewater treatment practice at an industrial level as alternative industrial wastewater remediation. © 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:265 / 275
页数:10
相关论文
共 50 条
  • [21] Removal of selected risk elements from wastewater in a horizontal subsurface flow constructed wetland
    Sima, Jan
    Svoboda, Lubomir
    Seda, Martin
    Krejsa, Jiri
    Jahodova, Jana
    WATER AND ENVIRONMENT JOURNAL, 2017, 31 (04) : 486 - 491
  • [22] Design of horizontal and vertical subsurface flow constructed wetlands treating industrial wastewater
    Mena, J.
    Rodriguez, L.
    Nunez, J.
    Fernandez, F. J.
    Villasenor, J.
    WATER POLLUTION IX, 2008, 111 : 555 - 564
  • [23] Greenhouse gas emissions from a horizontal subsurface-flow constructed wetland for wastewater treatment in small villages
    Taseli, B. K.
    GLOBAL NEST JOURNAL, 2020, 22 (02): : 192 - 196
  • [24] Effects of umbrella palms and wastewater depth on wastewater treatment in a subsurface flow constructed wetland
    Stecher, MC
    Weaver, RW
    ENVIRONMENTAL TECHNOLOGY, 2003, 24 (04) : 471 - 478
  • [25] Redox potential dynamics in a horizontal subsurface flow constructed wetland for wastewater treatment: Diel, seasonal and spatial fluctuations
    Dusek, Jiri
    Picek, Tomas
    Cizkova, Hana
    ECOLOGICAL ENGINEERING, 2008, 34 (03) : 223 - 232
  • [26] On-site treatment of domestic wastewater using a small-scale horizontal subsurface flow constructed wetland
    Gikas, G. D.
    Tsihrintzis, V. A.
    WATER SCIENCE AND TECHNOLOGY, 2010, 62 (03) : 603 - 614
  • [27] Horizontal subsurface flow constructed wetlands for tertiary treatment of dairy wastewater
    Celeste Schierano, Maria
    Cecilia Panigatti, Maria
    Alejandra Maine, Maria
    INTERNATIONAL JOURNAL OF PHYTOREMEDIATION, 2018, 20 (09) : 895 - 900
  • [28] Development of a horizontal subsurface flow modular constructed wetland for urban runoff treatment
    Choi, J. Y.
    Maniquiz, M. C.
    Geronimo, F. K.
    Lee, S. Y.
    Lee, B. S.
    Kim, L. H.
    WATER SCIENCE AND TECHNOLOGY, 2012, 66 (09) : 1950 - 1957
  • [29] Leachate treatment and greenhouse gas emission in subsurface horizontal flow constructed wetland
    Chiemchaisri, C.
    Chiemchaisri, W.
    Junsod, J.
    Threedeach, S.
    Wicranarachchi, P. N.
    BIORESOURCE TECHNOLOGY, 2009, 100 (16) : 3808 - 3814
  • [30] Changes of flow patterns in a horizontal subsurface flow constructed wetland treating domestic wastewater in tropical regions
    Rios, D. Ascuntar
    Velez, A. E. Toro
    Pena, M. R.
    Parra, C. A. Madera
    ECOLOGICAL ENGINEERING, 2009, 35 (02) : 274 - 280