Explainable Machine-Learning Model for Prediction of In-Hospital Mortality in Septic Patients Requiring Intensive Care Unit Readmission

被引:0
|
作者
Chang Hu
Lu Li
Yiming Li
Fengyun Wang
Bo Hu
Zhiyong Peng
机构
[1] Zhongnan Hospital of Wuhan University,Department of Critical Care Medicine
[2] Clinical Research Center of Hubei Critical Care Medicine,Jiangsu Provincial Key Laboratory of Critical Care Medicine
[3] Southeast University,undefined
来源
关键词
Explainable artificial intelligence; Machine learning; Random Forest; Sepsis; Mortality;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1695 / 1713
页数:18
相关论文
共 50 条
  • [21] Impact of socioeconomic status on mortality and unplanned readmission in septic intensive care unit patients
    Schnegelsberg, A.
    Mackenhauer, J.
    Nibro, H. L.
    Dreyer, P.
    Koch, K.
    Kirkegaard, H.
    ACTA ANAESTHESIOLOGICA SCANDINAVICA, 2016, 60 (04) : 465 - 475
  • [22] The impact of delirium on the prediction of in-hospital mortality in intensive care patients
    Mark van den Boogaard
    Sanne AE Peters
    Johannes G van der Hoeven
    Pieter C Dagnelie
    Pieter Leffers
    Peter Pickkers
    Lisette Schoonhoven
    Critical Care, 14
  • [23] The impact of delirium on the prediction of in-hospital mortality in intensive care patients
    van den Boogaard, Mark
    Peters, Sanne A. E.
    van der Hoeven, Johannes G.
    Dagnelie, Pieter C.
    Leffers, Pieter
    Pickkers, Peter
    Schoonhoven, Lisette
    CRITICAL CARE, 2010, 14 (04):
  • [24] A machine learning-based risk stratification tool for in-hospital mortality of intensive care unit patients with heart failure
    Luo, Cida
    Zhu, Yi
    Zhu, Zhou
    Li, Ranxi
    Chen, Guoqin
    Wang, Zhang
    JOURNAL OF TRANSLATIONAL MEDICINE, 2022, 20 (01)
  • [25] A machine learning-based risk stratification tool for in-hospital mortality of intensive care unit patients with heart failure
    Cida Luo
    Yi Zhu
    Zhou Zhu
    Ranxi Li
    Guoqin Chen
    Zhang Wang
    Journal of Translational Medicine, 20
  • [26] Novel Machine Learning Model to Predict Intensive Care Unit Readmission or Mortality After Cardiothoracic Surgery
    Cortina, George A.
    Zhong, Shujin
    Gao, Michael
    Ratliff, William
    Knechtle, William S.
    Balu, Suresh
    Kester, Kelly
    Lindsay, Mary
    Engel, Jill R.
    Schroder, Jacob N.
    Sendak, Mark
    Podgoreanu, Mihai V.
    ANESTHESIA AND ANALGESIA, 2020, 130 : 193 - 194
  • [27] Machine learning models to predict in-hospital mortality in septic patients with diabetes
    Qi, Jing
    Lei, Jingchao
    Li, Nanyi
    Huang, Dan
    Liu, Huaizheng
    Zhou, Kefu
    Dai, Zheren
    Sun, Chuanzheng
    FRONTIERS IN ENDOCRINOLOGY, 2022, 13
  • [28] PERFORMANCE OF THE EPIC IN-HOSPITAL MORTALITY RISK MODEL IN THE INTENSIVE CARE UNIT
    Seawell, Jaimie
    Schmidt, Monica
    Alva, Rakesh
    CRITICAL CARE MEDICINE, 2022, 50 (01) : 608 - 608
  • [29] An explainable machine learning algorithm for risk factor analysis of in-hospital mortality in sepsis survivors with ICU readmission
    Jiang, Zhengyu
    Bo, Lulong
    Xu, Zhenhua
    Song, Yubing
    Wang, Jiafeng
    Wen, Pingshan
    Wan, Xiaojian
    Yang, Tao
    Deng, Xiaoming
    Bian, Jinjun
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 204 (204)
  • [30] Machine Learning Prediction Models for Mortality in Intensive Care Unit Patients with Lactic Acidosis
    Pattharanitima, Pattharawin
    Thongprayoon, Charat
    Kaewput, Wisit
    Qureshi, Fawad
    Qureshi, Fahad
    Petnak, Tananchai
    Srivali, Narat
    Gembillo, Guido
    O'Corragain, Oisin A.
    Chesdachai, Supavit
    Vallabhajosyula, Saraschandra
    Guru, Pramod K.
    Mao, Michael A.
    Garovic, Vesna D.
    Dillon, John J.
    Cheungpasitporn, Wisit
    JOURNAL OF CLINICAL MEDICINE, 2021, 10 (21)