Let F be a family of connected bipartite graphs, each with at least three vertices. A proper vertex colouring of a graph G with no bichromatic subgraph in F is F-free. The F-free chromatic number χ(G,F) of a graph G is the minimum number of colours in an F-free colouring of G. For appropriate choices of F, several well-known types of colourings fit into this framework, including acyclic colourings, star colourings, and distance-2 colourings. This paper studies F-free colourings of the cartesian product of graphs.
机构:
Graz Univ Technol, Inst Math Strukturtheorie, Steyrergasse 30-3, A-8010 Graz, AustriaGraz Univ Technol, Inst Math Strukturtheorie, Steyrergasse 30-3, A-8010 Graz, Austria
Boiko, Tetiana
Cuno, Johannes
论文数: 0引用数: 0
h-index: 0
机构:
Graz Univ Technol, Inst Math Strukturtheorie, Steyrergasse 30-3, A-8010 Graz, AustriaGraz Univ Technol, Inst Math Strukturtheorie, Steyrergasse 30-3, A-8010 Graz, Austria
Cuno, Johannes
Imrich, Wilfried
论文数: 0引用数: 0
h-index: 0
机构:
Univ Leoben, Dept Math & Informat Technol, Franz Josef Str 18, A-8700 Leoben, AustriaGraz Univ Technol, Inst Math Strukturtheorie, Steyrergasse 30-3, A-8010 Graz, Austria
Imrich, Wilfried
论文数: 引用数:
h-index:
机构:
Lehner, Florian
van de Woestijne, Christiaan E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Leoben, Dept Math & Informat Technol, Franz Josef Str 18, A-8700 Leoben, AustriaGraz Univ Technol, Inst Math Strukturtheorie, Steyrergasse 30-3, A-8010 Graz, Austria