Optimal Regularity and Nondegeneracy of a Free Boundary Problem Related to the Fractional Laplacian

被引:0
|
作者
Ray Yang
机构
[1] New York University,Courant Institute of Mathematical Sciences
关键词
Free Boundary; Free Boundary Problem; Harnack Inequality; Obstacle Problem; Poisson Kernel;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the optimal regularity and nondegeneracy of a free boundary problem related to the fractional Laplacian. This work is related to, but addresses a different problem from, recent work of Caffarelli et al. (J Eur Math Soc (JEMS) 12(5):1151–1179, 2010). A variant of the boundary Harnack inequality is also proved, where it is no longer required that the function be zero along the boundary.
引用
收藏
页码:693 / 723
页数:30
相关论文
共 50 条
  • [21] A fractional free boundary problem related to a plasma problem
    Allen, Mark
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2019, 27 (08) : 1665 - 1696
  • [22] Higher regularity of the free boundary in the obstacle problem for the fractional heat operator
    Hu, Xi
    Tang, Lin
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (04)
  • [23] Optimal Regularity Results Related to a Partition Problem Involving the Half-Laplacian
    Zilio, Alessandro
    NEW TRENDS IN SHAPE OPTIMIZATION, 2015, 166 : 301 - 314
  • [24] The variable coefficient thin obstacle problem: Optimal regularity and regularity of the regular free boundary
    Koch, Herbert
    Ruland, Angkana
    Shi, Wenhui
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (04): : 845 - 897
  • [25] Regularity of a free boundary problem
    Lavi Karp
    Henrik Shahgholian
    The Journal of Geometric Analysis, 1999, 9 (4): : 653 - 669
  • [26] Weak solutions and regularity of the interface in an inhomogeneous free boundary problem for the p(x)-Laplacian
    Lederman, Claudia
    Wolanski, Noemi
    INTERFACES AND FREE BOUNDARIES, 2017, 19 (02) : 201 - 241
  • [27] Fine boundary regularity for the singular fractional p-Laplacian
    Iannizzotto, A.
    Mosconi, S.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 412 : 322 - 379
  • [28] On weighted positivity and the Wiener regularity of a boundary point for the fractional Laplacian
    Eilertsen, S
    ARKIV FOR MATEMATIK, 2000, 38 (01): : 53 - 75
  • [29] Fine boundary regularity for the degenerate fractional p-Laplacian
    Iannizzotto, Antonio
    Mosconi, Sunra J. N.
    Squassina, Marco
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (08)
  • [30] Optimal regularity for the obstacle problem for the p-Laplacian
    Andersson, John
    Lindgren, Erik
    Shahgholian, Henrik
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (06) : 2167 - 2179