Graphene layer of hybrid graphene/hexagonal boron nitride model upon heating

被引:0
|
作者
Hang T. T. Nguyen
机构
[1] Ho Chi Minh City University of Technology,
[2] VNU – HCM,undefined
来源
Carbon Letters | 2019年 / 29卷
关键词
Hybrid graphene/hexagonal boron nitride model; Melting criterion; Melting range; Liquid-like atoms; Cluster;
D O I
暂无
中图分类号
学科分类号
摘要
Hybrid graphene/h-BN model is studied via molecular dynamics simulation to observe the evolution of graphene layer upon heating. Model containing 20,064 atoms is heated up from 50 to 8000 K via Tersoff and Lennard–Jones potentials. Various thermodynamic quantities, structural characteristics, and the occurrence of liquid-like atoms are studied. The Lindemann criterion for 2D case is calculated and used to observe the appearance of liquid-like atoms. The atomic mechanism of structural evolution upon heating is analyzed on the basis of the occurrence/growth of liquid-like atoms, the formation of clusters, the coordination number, and the ring statistics. The liquid-like atoms tend to form clusters and the largest cluster increases slightly in order to form a single largest cluster of liquid-like atoms. The other models such as free-standing graphene, zigzag GNR, and armchair GNR are also presented to have an entire picture about the evolution of graphene upon heating in different models. Note that the largest clusters of free-standing graphene as well as zigzag GNR, and armchair GNR tend to decrease to form a ring-like 2D liquid carbon.
引用
收藏
页码:521 / 528
页数:7
相关论文
共 50 条
  • [41] Etched graphene quantum dots on hexagonal boron nitride
    Engels, S.
    Epping, A.
    Volk, C.
    Korte, S.
    Voigtlaender, B.
    Watanabe, K.
    Taniguchi, T.
    Trellenkamp, S.
    Stampfer, C.
    APPLIED PHYSICS LETTERS, 2013, 103 (07)
  • [42] Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial
    Dai, S.
    Ma, Q.
    Liu, M. K.
    Andersen, T.
    Fei, Z.
    Goldflam, M. D.
    Wagner, M.
    Watanabe, K.
    Taniguchi, T.
    Thiemens, M.
    Keilmann, F.
    Janssen, G. C. A. M.
    Zhu, S-E.
    Jarillo-Herrero, P.
    Fogler, M. M.
    Basov, D. N.
    NATURE NANOTECHNOLOGY, 2015, 10 (08) : 682 - 686
  • [43] Electrically dependent bandgaps in graphene on hexagonal boron nitride
    Kaplan, D.
    Recine, G.
    Swaminathan, V.
    APPLIED PHYSICS LETTERS, 2014, 104 (13)
  • [44] Origin of band gaps in graphene on hexagonal boron nitride
    Jeil Jung
    Ashley M. DaSilva
    Allan H. MacDonald
    Shaffique Adam
    Nature Communications, 6
  • [45] Effective Cleaning of Hexagonal Boron Nitride for Graphene Devices
    Garcia, Andrei G. F.
    Neumann, Michael
    Amet, Francois
    Williams, James R.
    Watanabe, Kenji
    Taniguchi, Takashi
    Goldhaber-Gordon, David
    NANO LETTERS, 2012, 12 (09) : 4449 - 4454
  • [46] Thermally Induced Graphene Rotation on Hexagonal Boron Nitride
    Wang, Duoming
    Chen, Guorui
    Li, Chaokai
    Cheng, Meng
    Yang, Wei
    Wu, Shuang
    Xie, Guibai
    Zhang, Jing
    Zhao, Jing
    Lu, Xiaobo
    Chen, Peng
    Wang, Guole
    Meng, Jianling
    Tang, Jian
    Yang, Rong
    He, Congli
    Liu, Donghua
    Shi, Dongxia
    Watanabe, Kenji
    Taniguchi, Takashi
    Feng, Ji
    Zhang, Yuanbo
    Zhang, Guangyu
    PHYSICAL REVIEW LETTERS, 2016, 116 (12)
  • [47] Origin of band gaps in graphene on hexagonal boron nitride
    Jung, Jeil
    DaSilva, Ashley M.
    MacDonald, Allan H.
    Adam, Shaffique
    NATURE COMMUNICATIONS, 2015, 6
  • [48] Electronic structure of superlattices of graphene and hexagonal boron nitride
    Kaloni, T. P.
    Cheng, Y. C.
    Schwingenschloegl, U.
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (03) : 919 - 922
  • [49] Spontaneous emission mediated by graphene/hexagonal boron nitride/graphene sandwich structure
    Mu, Hong-Qian
    Zhou, Ying
    Wang, Tong-Biao
    Zhang, De-Jian
    Liu, Wen-Xing
    Yu, Tian-Bao
    Liao, Qing-Hua
    EPL, 2021, 136 (03)
  • [50] Graphene/hexagonal boron nitride/graphene nanopore for electrical detection of single molecules
    He, Yuhui
    Tsutsui, Makusu
    Ryuzaki, Sou
    Yokota, Kazumichi
    Taniguchi, Masateru
    Kawai, Tomoji
    NPG ASIA MATERIALS, 2014, 6 : e104 - e104