Composite kernel learning

被引:5
|
作者
Marie Szafranski
Yves Grandvalet
Alain Rakotomamonjy
机构
[1] Université d’Évry Val d’Essonne,CNRS FRE 3190—IBISC
[2] Universités d’Aix-Marseille,CNRS UMR 6166—LIF
[3] Université de Technologie de Compiègne,CNRS UMR 6599—Heudiasyc
[4] Université de Rouen,EA 4108—LITIS
来源
Machine Learning | 2010年 / 79卷
关键词
Supervized learning; Support vector machine; Kernel learning; Structured kernels; Feature selection and sparsity;
D O I
暂无
中图分类号
学科分类号
摘要
The Support Vector Machine is an acknowledged powerful tool for building classifiers, but it lacks flexibility, in the sense that the kernel is chosen prior to learning. Multiple Kernel Learning enables to learn the kernel, from an ensemble of basis kernels, whose combination is optimized in the learning process. Here, we propose Composite Kernel Learning to address the situation where distinct components give rise to a group structure among kernels. Our formulation of the learning problem encompasses several setups, putting more or less emphasis on the group structure. We characterize the convexity of the learning problem, and provide a general wrapper algorithm for computing solutions. Finally, we illustrate the behavior of our method on multi-channel data where groups correspond to channels.
引用
收藏
页码:73 / 103
页数:30
相关论文
共 50 条
  • [41] A kernel learning framework for domain adaptation learning
    Tao JianWen
    Chung FuLai
    Wang ShiTong
    SCIENCE CHINA-INFORMATION SCIENCES, 2012, 55 (09) : 1983 - 2007
  • [42] A kernel learning framework for domain adaptation learning
    JianWen Tao
    FuLai Chung
    ShiTong Wang
    Science China Information Sciences, 2012, 55 : 1983 - 2007
  • [43] Deep kernel learning in extreme learning machines
    Afzal, A. L.
    Nair, Nikhitha K.
    Asharaf, S.
    PATTERN ANALYSIS AND APPLICATIONS, 2021, 24 (01) : 11 - 19
  • [44] Kernel Learning for Local Learning Based Clustering
    Zeng, Hong
    Cheung, Yiu-ming
    ARTIFICIAL NEURAL NETWORKS - ICANN 2009, PT I, 2009, 5768 : 10 - 19
  • [45] Approximate kernel competitive learning
    Wu, Jian-Sheng
    Zheng, Wei-Shi
    Lai, Jian-Huang
    NEURAL NETWORKS, 2015, 63 : 117 - 132
  • [46] Variable Sparsity Kernel Learning
    Aflalo, Jonathan
    Ben-Tal, Aharon
    Bhattacharyya, Chiranjib
    Nath, Jagarlapudi Saketha
    Raman, Sankaran
    JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 565 - 592
  • [47] Guided Deep Kernel Learning
    Achituve, Idan
    Chechik, Gal
    Fetaya, Ethan
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 11 - 21
  • [48] Learning by local kernel polarization
    Wang, Tinghua
    Tian, Shengfeng
    Huang, Houkuan
    Deng, Dayong
    NEUROCOMPUTING, 2009, 72 (13-15) : 3077 - 3084
  • [49] Kernel methods in machine learning
    Hofmann, Thomas
    Schoelkopf, Bernhard
    Smola, Alexander J.
    ANNALS OF STATISTICS, 2008, 36 (03): : 1171 - 1220