We propose a hybridizable discontinuous Galerkin (HDG) method to numerically solve the Oseen equations which can be seen as the linearized version of the incompressible Navier-Stokes equations. We use same polynomial degree to approximate the velocity, its gradient and the pressure. With a special projection and postprocessing, we obtain optimal convergence for the velocity gradient and pressure and superconvergence for the velocity. Numerical results supporting our theoretical results are provided.
机构:
Guangzhou Univ, Sch Math & informat Sci, Guangzhou, Guangdong, Peoples R ChinaGuangzhou Univ, Sch Math & informat Sci, Guangzhou, Guangdong, Peoples R China
机构:
Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Xiamen 361005, Fujian, Peoples R ChinaXiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
Chen, Huangxin
Qiu, Weifeng
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Math, 83 Tat Chee Ave, Kowloon, Hong Kong, Peoples R ChinaXiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
Qiu, Weifeng
Shi, Ke
论文数: 0引用数: 0
h-index: 0
机构:
Old Dominion Univ, Dept Math & Stat, Norfolk, VA 23529 USAXiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
Shi, Ke
Solano, Manuel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Concepcion, Dept Ingn Matemat, Concepcion, Chile
Univ Concepcion, Ctr Invest Ingn Matemat CI2MA, Concepcion, ChileXiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
机构:
South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R ChinaSouth China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China