Real-time detection of rice phenology through convolutional neural network using handheld camera images

被引:0
|
作者
Jingye Han
Liangsheng Shi
Qi Yang
Kai Huang
Yuanyuan Zha
Jin Yu
机构
[1] Wuhan University,State Key Laboratory of Water Resources and Hydropower Engineering Sciences
[2] Guangxi Hydraulic Research Institute,undefined
来源
Precision Agriculture | 2021年 / 22卷
关键词
Phenology; Rice; CNN; Deep learning; Handheld camera image;
D O I
暂无
中图分类号
学科分类号
摘要
Smallholder farmers play an important role in the global food supply. As smartphones become increasingly pervasive, they enable smallholder farmers to collect images at very low cost. In this study, an efficient deep convolutional neural network (DCNN) architecture was proposed to detect development stages (DVS) of paddy rice using photographs taken by a handheld camera. The DCNN model was trained with different strategies and compared against the traditional time series Green chromatic coordinate (time-series Gcc) method and the manually extracted feature-combining support vector machine (MF-SVM) method. Furthermore, images taken at different view angles, model training strategies, and interpretations of predictions of the DCNN models were investigated. Optimal results were obtained by the DCNN model trained with the proposed two-step fine-tuning strategy, with a high overall accuracy of 0.913 and low mean absolute error of 0.090. The results indicated that images taken at large view angles contained more valuable information and the performance of the model can be further improved by using images taken at multiple angles. The two-step fine-tuning strategy greatly improved the model robustness against the randomness of view angle. The interpretation results demonstrated that it is possible to extract phenology-related features from images. This study provides a phenology detection approach to utilize handheld camera images in real time and some important insights into the use of deep learning in real world scenarios.
引用
收藏
页码:154 / 178
页数:24
相关论文
共 50 条
  • [21] The analysis of Iris image acquisition and real-time detection system using convolutional neural network
    Yanru Liu
    Jiali Xu
    Austin Lin Yee
    The Journal of Supercomputing, 2024, 80 (4) : 4500 - 4532
  • [22] Transfer learning for real-time crater detection on asteroids using a Fully Convolutional Neural Network
    Latorre, F.
    Spiller, D.
    Sasidharan, S. T.
    Basheer, S.
    Curti, F.
    ICARUS, 2023, 394
  • [23] The analysis of Iris image acquisition and real-time detection system using convolutional neural network
    Liu, Yanru
    Xu, Jiali
    Yee, Austin Lin
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (04): : 4500 - 4532
  • [24] Real-Time Pain Detection Using Deep Convolutional Neural Network for Facial Expression and Motion
    Pikulkaew, Kornprom
    Boonchieng, Waraporn
    Boonchieng, Ekkarat
    PROCEEDINGS OF SEVENTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, ICICT 2022, VOL. 2, 2023, 448 : 341 - 349
  • [25] Real-Time Video Object Recognition Using Convolutional Neural Network
    Ahn, Byungik
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [26] Real-time, simultaneous myoelectric control using a convolutional neural network
    Ameri, Ali
    Akhaee, Mohammad Ali
    Scheme, Erik
    Englehart, Kevin
    PLOS ONE, 2018, 13 (09):
  • [27] Real-time goat face recognition using convolutional neural network
    Billah, Masum
    Wang, Xihong
    Yu, Jiantao
    Jiang, Yu
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 194
  • [28] Age Estimation of Real-Time Faces Using Convolutional Neural Network
    Agbo-Ajala, Olatunbosun
    Viriri, Serestina
    COMPUTATIONAL COLLECTIVE INTELLIGENCE, PT I, 2019, 11683 : 316 - 327
  • [29] Real-Time Landing Spot Detection and Pose Estimation on Thermal Images Using Convolutional Neural Networks
    Chen, Xudong
    Lin, Feng
    Hamid, Mohamed Redhwan Abdul
    Teo, Swee Huat
    Phang, Swee King
    2018 IEEE 14TH INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2018, : 998 - 1003
  • [30] Detection of Real Time Face Mask using Convolutional Neural Network
    Jeyaprakash, N.
    Devi, Nivethitha M.
    Vignesh, A.
    Vignesh, L.
    Sudhakar, T. D.
    2023 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENERGY SYSTEMS, ICEES, 2023, : 446 - 449