Long-distance electron transfer in a filamentous Gram-positive bacterium

被引:0
|
作者
Yonggang Yang
Zegao Wang
Cuifen Gan
Lasse Hyldgaard Klausen
Robin Bonné
Guannan Kong
Dizhou Luo
Mathijs Meert
Chunjie Zhu
Guoping Sun
Jun Guo
Yuxin Ma
Jesper Tataru Bjerg
Jean Manca
Meiying Xu
Lars Peter Nielsen
Mingdong Dong
机构
[1] Guangdong Academy of Sciences,Institute of Microbiology
[2] State Key Laboratory of Applied Microbiology Southern China,Interdisciplinary Nanoscience Center (iNANO), Sino
[3] Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application,Danish Center for Education and Research (SDC)
[4] Aarhus University,College of Materials Science and Engineering
[5] Sichuan University,X
[6] Hasselt University,LAB
[7] Guangdong Pharmaceutical University,School of Life Sciences and Biopharmaceutics
[8] Aarhus University,Center for Electromicrobiology
来源
Nature Communications | / 12卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Long-distance extracellular electron transfer has been observed in Gram-negative bacteria and plays roles in both natural and engineering processes. The electron transfer can be mediated by conductive protein appendages (in short unicellular bacteria such as Geobacter species) or by conductive cell envelopes (in filamentous multicellular cable bacteria). Here we show that Lysinibacillus varians GY32, a filamentous unicellular Gram-positive bacterium, is capable of bidirectional extracellular electron transfer. In microbial fuel cells, L. varians can form centimetre-range conductive cellular networks and, when grown on graphite electrodes, the cells can reach a remarkable length of 1.08 mm. Atomic force microscopy and microelectrode analyses suggest that the conductivity is linked to pili-like protein appendages. Our results show that long-distance electron transfer is not limited to Gram-negative bacteria.
引用
收藏
相关论文
共 50 条
  • [21] DISKOSPONDYLITIS ATTRIBUTABLE TO GRAM-POSITIVE FILAMENTOUS BACTERIA IN A DOG
    SMITH, KR
    KERLIN, RM
    MITCHELL, G
    JOURNAL OF THE AMERICAN VETERINARY MEDICAL ASSOCIATION, 1994, 205 (03) : 428 - 430
  • [22] POSITIVE REGULATION IN THE GRAM-POSITIVE BACTERIUM - BACILLUS-SUBTILIS
    KLIER, A
    MSADEK, T
    RAPOPORT, G
    ANNUAL REVIEW OF MICROBIOLOGY, 1992, 46 : 429 - 459
  • [23] LONG-DISTANCE ELECTRON-TRANSFER IN POLYMERS AND PROTEINS
    MCLENDON, G
    GUARR, T
    MCGUIRE, M
    SIMOLO, K
    STRAUCH, S
    TAYLOR, K
    COORDINATION CHEMISTRY REVIEWS, 1985, 64 (MAY) : 113 - 124
  • [24] ION-CONDUCTING CHANNELS IN A GRAM-POSITIVE BACTERIUM
    ZORATTI, M
    PETRONILLI, V
    FEBS LETTERS, 1988, 240 (1-2) : 105 - 109
  • [25] The acetylproteome of Gram-positive model bacterium Bacillus subtilis
    Kim, Dooil
    Yu, Byung Jo
    Kim, Jung Ae
    Lee, Yong-Jik
    Choi, Soo-Geun
    Kang, Sunghyun
    Pan, Jae-Gu
    PROTEOMICS, 2013, 13 (10-11) : 1726 - 1736
  • [26] ULTRASTRUCTURE OF BUTYRIVIBRIO-FIBRISOLVENS - GRAM-POSITIVE BACTERIUM
    CHENG, KJ
    COSTERTON, JW
    JOURNAL OF BACTERIOLOGY, 1977, 129 (03) : 1506 - 1512
  • [27] Localization Pattern of Conjugation Machinery in a Gram-Positive Bacterium
    Bauer, Theresa
    Roesch, Thomas
    Itaya, Mitsuhiro
    Graumann, Peter L.
    JOURNAL OF BACTERIOLOGY, 2011, 193 (22) : 6244 - 6256
  • [28] Electron transfer in Gram-positive bacteria: enhancement strategies for bioelectrochemical applications
    Gomaa, Ola M.
    Costa, Nazua L.
    Paquete, Catarina M.
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2022, 38 (05):
  • [29] Activation and manipulation of host responses by a Gram-positive bacterium
    Balaji, Vasudevan
    Sessa, Guido
    PLANT SIGNALING & BEHAVIOR, 2008, 3 (10) : 839 - 841
  • [30] Electron transfer in Gram-positive bacteria: enhancement strategies for bioelectrochemical applications
    Ola M. Gomaa
    Nazua L. Costa
    Catarina M. Paquete
    World Journal of Microbiology and Biotechnology, 2022, 38