Non-parametric bootstrap tests for parametric distribution families

被引:0
|
作者
Gábor Szűcs
机构
[1] Bolyai Institute,
来源
Acta Scientiarum Mathematicarum | 2011年 / 77卷 / 3-4期
关键词
bootstrap; parametric estimation; empirical process; approximation; convergence in distribution; 62E20; 62F40; 62G30;
D O I
10.1007/BF03651319
中图分类号
学科分类号
摘要
Durbin’s estimated empirical process is a widely used tool to testing goodness of fit for parametric distribution families. In general, statistical methods based on the process are not distribution free and the critical values can not always be calculated in a theoretical way. One can avoid these difficulties by applying the parametric or the non-parametric bootstrap procedure. Although the parametric bootstrapped estimated empirical process is well investigated, only a few papers dealt with the non-parametric version. Recently, Babu and Rao pointed out that in the latter case a bias correction is needed, and they proved the weak convergence of the bootstrapped process in continuous distribution families. Our paper presents a weak approximation theorem for the non-parametric bootstrapped estimated empirical process using similar conditions under which Durbin’s non-bootstrapped process converges. The result covers the most important continuous and discrete distribution families. Simulation studies in the Poisson and the normal distribution are also reported.
引用
收藏
页码:703 / 723
页数:20
相关论文
共 50 条
  • [41] Comparison of non-parametric and semi-parametric tests in detecting long memory
    Boutahar, Mohamed
    JOURNAL OF APPLIED STATISTICS, 2009, 36 (09) : 945 - 972
  • [42] Selection of orthogonal chromatographic systems based on parametric and non-parametric statistical tests
    Forlay-Frick, P
    Van Gyseghem, E
    Héberger, K
    Vander Heyden, Y
    ANALYTICA CHIMICA ACTA, 2005, 539 (1-2) : 1 - 10
  • [43] Parametric and Non-parametric Encompassing Procedures
    Bontemps, Christophe
    Florens, Jean-Pierre
    Richard, Jean-Francois
    OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2008, 70 : 751 - 780
  • [44] Who is afraid of non-normal data? Choosing between parametric and non-parametric tests
    le Cessie, Saskia
    Goeman, Jelle J.
    Dekkers, Olaf M.
    EUROPEAN JOURNAL OF ENDOCRINOLOGY, 2020, 182 (02) : E1 - E3
  • [45] Conditional Non-parametric Bootstrap for Non-linear Mixed Effect Models
    Emmanuelle Comets
    Christelle Rodrigues
    Vincent Jullien
    Moreno Ursino
    Pharmaceutical Research, 2021, 38 : 1057 - 1066
  • [46] Conditional Non-parametric Bootstrap for Non-linear Mixed Effect Models
    Comets, Emmanuelle
    Rodrigues, Christelle
    Jullien, Vincent
    Ursino, Moreno
    PHARMACEUTICAL RESEARCH, 2021, 38 (06) : 1057 - 1066
  • [47] Non-parametric tests for non-homogeneous poisson processes
    Villaseñor-Alva, JA
    Díaz-Carreño, MA
    AGROCIENCIA, 2003, 37 (01) : 21 - 31
  • [48] Non-parametric statistical tests for informative gene selection
    Ma, JW
    Li, FH
    Liu, JF
    ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 3, PROCEEDINGS, 2005, 3498 : 697 - 702
  • [49] On a measure problem arising in the theory of non-parametric tests
    Scheffe, H
    ANNALS OF MATHEMATICAL STATISTICS, 1943, 14 : 227 - 233
  • [50] CONTRA INDICATION OF NON-PARAMETRIC TESTS IN MEDICAL EXPERIMENTATION
    JUVANCZ, I
    BIOMETRICS, 1961, 17 (01) : 183 - &