Existence of global weak solutions for 3D degenerate compressible Navier–Stokes equations

被引:0
|
作者
Alexis F. Vasseur
Cheng Yu
机构
[1] The University of Texas at Austin,Department of Mathematics
来源
Inventiones mathematicae | 2016年 / 206卷
关键词
35Q35; 76N10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the existence of global weak solutions for 3D compressible Navier–Stokes equations with degenerate viscosity. The method is based on the Bresch and Desjardins (Commun Math Phys 238:211–223 2003) entropy conservation. The main contribution of this paper is to derive the Mellet and Vasseur (Commun Partial Differ Equ 32:431–452, 2007) type inequality for weak solutions, even if it is not verified by the first level of approximation. This provides existence of global solutions in time, for the compressible barotropic Navier–Stokes equations. The result holds for any γ>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma >1$$\end{document} in two dimensional space, and for 1<γ<3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<\gamma <3$$\end{document} in three dimensional space, in both case with large initial data possibly vanishing on the vacuum. This solves an open problem proposed by Lions (Mathematical topics in fluid mechanics. Vol. 2. Compressible models, 1998).
引用
收藏
页码:935 / 974
页数:39
相关论文
共 50 条
  • [21] Global weak solutions to 3D compressible Navier-Stokes-Poisson equations with density-dependent viscosity
    Ye, Yulin
    Dou, Changsheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (01) : 180 - 211
  • [22] Global existence of solutions for compressible Navier-Stokes equations with vacuum
    Qin, Xulong
    Yao, Zheng-an
    Zhou, Wenshu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (01) : 226 - 238
  • [23] GLOBAL EXISTENCE OF SOLUTIONS FOR ISENTROPIC COMPRESSIBLE NAVIER-STOKES EQUATIONS
    LIONS, PL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (12): : 1335 - 1340
  • [24] On the global-in-time inviscid limit of the 3D degenerate compressible Navier-Stokes equations
    Geng, Yongcai
    Li, Yachun
    Zhu, Shengguo
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 179 : 337 - 390
  • [25] On the Breakdown of Regular Solutions with Finite Energy for 3D Degenerate Compressible Navier-Stokes Equations
    Zhu, Shengguo
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2021, 23 (03)
  • [26] Existence of weak solutions for compressible Navier-Stokes equations with entropy transport
    Maltese, David
    Michalek, Martin
    Mucha, Piotr B.
    Novotny, Antonin
    Pokorny, Milan
    Zatorska, Ewelina
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (08) : 4448 - 4485
  • [27] The stochastic Navier–Stokes equations for heat-conducting, compressible fluids: global existence of weak solutions
    Scott A. Smith
    Konstantina Trivisa
    Journal of Evolution Equations, 2018, 18 : 411 - 465
  • [28] Global existence of a weak solution to 3d stochastic Navier–Stokes equations in an exterior domain
    Takeshi Taniguchi
    Nonlinear Differential Equations and Applications NoDEA, 2014, 21 : 813 - 840
  • [29] On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids
    Bresch, Didier
    Desjardins, Benoit
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 87 (01): : 57 - 90
  • [30] Existence and uniqueness of weak solutions to stochastic 3D Navier-Stokes equations with delays
    Gao, Xiancheng
    Gao, Hongjun
    APPLIED MATHEMATICS LETTERS, 2019, 95 : 158 - 164