The field of moduli of singular K3 surfaces

被引:0
|
作者
Roberto Laface
机构
[1] Technische Universität München,
关键词
K3 surfaces; Abelian surfaces; Elliptic curves; Complex multiplication; Class field theory; Field of moduli; 14J28; 14K15; 14K22;
D O I
暂无
中图分类号
学科分类号
摘要
We study the field of moduli of singular K3 surfaces. We discuss both the field of moduli over the CM field and over Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Q}}}$$\end{document}. As a by-product, we show non-finiteness of isomorphism classes of singular K3 surfaces with field of moduli of bounded degree. Finally, we provide an explicit description of the field of moduli in terms of the 2-torsion of the Galois group of the ring class field over which the K3 surface is defined.
引用
收藏
页码:509 / 531
页数:22
相关论文
共 50 条