Relationships between Interplanetary Coronal Mass Ejection Characteristics and Geoeffectiveness in the Declining Phase of Solar Cycles 23 and 24

被引:0
|
作者
M. Bendict Lawrance
Y.-J. Moon
A. Shanmugaraju
机构
[1] Kyung Hee University,Department of Astronomy and Space Science
[2] Kyung Hee University,School of Space Research
[3] Arul Anandar College,Department of Physics
来源
Solar Physics | 2020年 / 295卷
关键词
Coronal mass ejections; Geomagnetic storms; ICMEs; Sheath region;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we have examined the relationships between the characteristics of interplanetary coronal mass ejections (ICMEs) and geoeffectiveness in the declining phase of Solar Cycles 23 and 24. We discuss the results in comparison with those of the rising phase. Major results of this study are as follows: The ICMEs in the declining phase of Cycle 23 have generated higher storm strength than those in Cycle 24. The mean storm strength of the sheath and ICME for each cycle in the declining phase is greater than in the rising phase. This indicates that the declining phase is more geoeffective than the rising phase. Cycle 24 events seem to be slightly more geoeffective towards the second half of the cycle even though the cycle is weak in the rising phase. The mean radial size of ICMEs is ∼0.36\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sim~0.36$\end{document} AU in Cycle 23 and ∼0.32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sim 0.32$\end{document} AU in Cycle 24. Around 25% of the ICMEs in Cycle 23 and 15% in Cycle 24 exceed ∼0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sim 0.5$\end{document} AU in size at 1 AU. The correlation between the southward magnetic component (Bs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${B}_{s}$\end{document}) and the storm strength they cause is decisive in both cycles. This substantiates that the storm strength of the ICMEs strongly relies on the ICME Bs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${B}_{s}$\end{document} in both cycles. The correlation between the storm strength/Bs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${B}_{s}$\end{document} and the size of sheath/ICME seems insignificant, which suggests that the storm strength is independent of the size of the ICMEs. Almost 80% of geomagnetic storm peaks occurred in the ICME duration of the declining phase of Cycles 23 and 24, which is substantially identical to the rising phase. Summing up, this sort of study will be eminent to emphasize the variations in the rising and declining phases of solar cycles. The ICMEs are dominant in generating storms both in the rising and declining phases of a solar although in the declining phase they seem to generate more geoeffectiveness than in the rising phase.
引用
收藏
相关论文
共 50 条
  • [21] Mass loss via solar wind and coronal mass ejections during solar cycles 23 and 24
    Mishra, Wageesh
    Srivastava, Nandita
    Wang, Yuming
    Mirtoshev, Zavkiddin
    Zhang, Jie
    Liu, Rui
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 486 (04) : 4671 - 4685
  • [22] Solar cycle variation of interplanetary coronal mass ejection latitudes
    P. X. Gao
    K. J. Li
    Journal of Astrophysics and Astronomy, 2010, 31 : 165 - 175
  • [23] Solar Cycle Variation of Interplanetary Coronal Mass Ejection Latitudes
    Gao, P. X.
    Li, K. J.
    JOURNAL OF ASTROPHYSICS AND ASTRONOMY, 2010, 31 (03) : 165 - 175
  • [24] Solar energetic particle flux enhancement as an indicator of halo coronal mass ejection geoeffectiveness
    Gleisner, H.
    Watermann, J.
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2006, 4 (06):
  • [25] Interplanetary Coronal Mass Ejections During Solar Cycle 23
    Richardson, Ian G.
    Cane, Hilary V.
    TWELFTH INTERNATIONAL SOLAR WIND CONFERENCE, 2010, 1216 : 683 - 686
  • [26] Geoeffectiveness of the interplanetary manifestations of coronal mass ejections and solar-wind stream–stream interactions
    F. Mustajab
    Astrophysics and Space Science, 2011, 331 : 91 - 104
  • [27] Acceleration of Solar Energetic Particles by the Shock of Interplanetary Coronal Mass Ejection
    Mondal, Shanwlee Sow
    Sarkar, Aveek
    Vaidya, Bhargav
    Mignone, Andrea
    ASTROPHYSICAL JOURNAL, 2021, 923 (01):
  • [28] AN ANALYSIS OF INTERPLANETARY SOLAR RADIO EMISSIONS ASSOCIATED WITH A CORONAL MASS EJECTION
    Krupar, V.
    Eastwood, J. P.
    Kruparova, O.
    Santolik, O.
    Soucek, J.
    Magdalenic, J.
    Vourlidas, A.
    Maksimovic, M.
    Bonnin, X.
    Bothmer, V.
    Mrotzek, N.
    Pluta, A.
    Barnes, D.
    Davies, J. A.
    Oliveros, J. C. Martinez
    Bale, S. D.
    ASTROPHYSICAL JOURNAL LETTERS, 2016, 823 (01)
  • [29] Interplanetary Propagation Behavior of the Fast Coronal Mass Ejection on 23 July 2012
    M. Temmer
    N. V. Nitta
    Solar Physics, 2015, 290 : 919 - 932
  • [30] Interplanetary Propagation Behavior of the Fast Coronal Mass Ejection on 23 July 2012
    Temmer, M.
    Nitta, N. V.
    SOLAR PHYSICS, 2015, 290 (03) : 919 - 932