Hardy and Carleson Measure Spaces Associated with Operators on Spaces of Homogeneous Type

被引:1
|
作者
Yanchang Han
Yongsheng Han
Ji Li
Chaoqiang Tan
机构
[1] South China Normal University,School of Mathematic Sciences
[2] Auburn University,Department of Mathematics
[3] Macquarie University,Department of Mathematics
[4] Shantou University,Department of Mathematics
来源
Potential Analysis | 2018年 / 49卷
关键词
Metric measure space; Hardy space; Atom; Molecule; Davies-Gaffney condition; Primary 42B35; Secondary 43A85, 42B25, 42B30, 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
Let (X, d, μ) be a metric measure space with doubling property. The Hardy spaces associated with operators L were introduced and studied by many authors. All these spaces, however, were first defined by L2(X) functions and finally the Hardy spaces were formally defined by the closure of these subspaces of L2(X) with respect to Hardy spaces norms. A natural and interesting question in this context is to characterize the closure. The purpose of this paper is to answer this question. More precisely, we will introduce CMOLp(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${CMO}_{L}^{p}(X)$\end{document}, the Carleson measure spaces associated with operators L, and characterize the Hardy spaces associated with operators L via (CMOLp(X))′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$({CMO}_{L}^{p}(X))'$\end{document}, the distributions of CMOLp(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${CMO}_{L}^{p}(X)$\end{document}.
引用
收藏
页码:247 / 265
页数:18
相关论文
共 50 条
  • [41] BOUNDEDNESS OF SINGULAR INTEGRALS IN HARDY SPACES ON SPACES OF HOMOGENEOUS TYPE
    Hu, Guoen
    Yang, Dachun
    Zhou, Yuan
    TAIWANESE JOURNAL OF MATHEMATICS, 2009, 13 (01): : 91 - 135
  • [42] Weighted BMO and Carleson measures on spaces of homogeneous type
    Hartzstein, Silvia
    Salinas, Oscar
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) : 950 - 969
  • [43] Endpoint Boundedness of Linear Commutators on Local Hardy Spaces Over Metric Measure Spaces of Homogeneous Type
    Xing Fu
    Dachun Yang
    Sibei Yang
    The Journal of Geometric Analysis, 2021, 31 : 4092 - 4164
  • [44] Tent Carleson measures for Hardy spaces
    Lv, Xiaofen
    Pau, Jordi
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (02)
  • [45] Carleson inequalities on parabolic Hardy spaces
    Nakagawa, Hayato
    Suzuki, Noriaki
    HOKKAIDO MATHEMATICAL JOURNAL, 2017, 46 (01) : 1 - 14
  • [46] Endpoint Boundedness of Linear Commutators on Local Hardy Spaces Over Metric Measure Spaces of Homogeneous Type
    Fu, Xing
    Yang, Dachun
    Yang, Sibei
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (04) : 4092 - 4164
  • [47] A note on Carleson measures for Hardy spaces
    Blasco De La Cruz, Oscar
    Jarchow, Hans
    ACTA SCIENTIARUM MATHEMATICARUM, 2005, 71 (1-2): : 371 - 389
  • [48] Reverse Carleson measures in Hardy spaces
    Andreas Hartmann
    Xavier Massaneda
    Artur Nicolau
    Joaquim Ortega-Cerdà
    Collectanea Mathematica, 2014, 65 : 357 - 365
  • [49] Hardy spaces estimates for a class of multilinear homogeneous operators
    Ding, Y
    Lu, SZ
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 1999, 42 (12): : 1270 - 1278
  • [50] Hardy spaces estimates for a class of multilinear homogeneous operators
    Ding, Yong
    Lu, Shanzhen
    Science in China, Series A: Mathematics, Physics, Astronomy, 1999, 42 (12): : 1270 - 1278