Hardy and Carleson Measure Spaces Associated with Operators on Spaces of Homogeneous Type

被引:1
|
作者
Yanchang Han
Yongsheng Han
Ji Li
Chaoqiang Tan
机构
[1] South China Normal University,School of Mathematic Sciences
[2] Auburn University,Department of Mathematics
[3] Macquarie University,Department of Mathematics
[4] Shantou University,Department of Mathematics
来源
Potential Analysis | 2018年 / 49卷
关键词
Metric measure space; Hardy space; Atom; Molecule; Davies-Gaffney condition; Primary 42B35; Secondary 43A85, 42B25, 42B30, 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
Let (X, d, μ) be a metric measure space with doubling property. The Hardy spaces associated with operators L were introduced and studied by many authors. All these spaces, however, were first defined by L2(X) functions and finally the Hardy spaces were formally defined by the closure of these subspaces of L2(X) with respect to Hardy spaces norms. A natural and interesting question in this context is to characterize the closure. The purpose of this paper is to answer this question. More precisely, we will introduce CMOLp(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${CMO}_{L}^{p}(X)$\end{document}, the Carleson measure spaces associated with operators L, and characterize the Hardy spaces associated with operators L via (CMOLp(X))′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$({CMO}_{L}^{p}(X))'$\end{document}, the distributions of CMOLp(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${CMO}_{L}^{p}(X)$\end{document}.
引用
收藏
页码:247 / 265
页数:18
相关论文
共 50 条
  • [1] Hardy and Carleson Measure Spaces Associated with Operators on Spaces of Homogeneous Type
    Han, Yanchang
    Han, Yongsheng
    Li, Ji
    Tan, Chaoqiang
    POTENTIAL ANALYSIS, 2018, 49 (02) : 247 - 265
  • [2] Hardy Spaces Associated with Generalized Degenerate Schrodinger Operators with Applications to Carleson Measure
    Liu, Xiong
    He, Jianxun
    Li, Jinxia
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (04)
  • [3] VARIABLE HARDY SPACES ASSOCIATED WITH OPERATORS SATISFYING DAVIES GAFFNEY ESTIMATES ON METRIC MEASURE SPACES OF HOMOGENEOUS TYPE
    Yang, Dachun
    Zhang, Junqiang
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 (01) : 47 - 87
  • [4] Hardy Spaces Associated with Generalized Degenerate Schrödinger Operators with Applications to Carleson Measure
    Xiong Liu
    Jianxun He
    Jinxia Li
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [5] Integration operators on Hardy-Carleson type tent spaces
    Chen, Jiale
    Wang, Maofa
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 506 (01)
  • [6] Product Hardy spaces associated to operators with heat kernel bounds on spaces of homogeneous type
    Peng Chen
    Xuan Thinh Duong
    Ji Li
    Lesley A. Ward
    Lixin Yan
    Mathematische Zeitschrift, 2016, 282 : 1033 - 1065
  • [7] Product Hardy spaces associated to operators with heat kernel bounds on spaces of homogeneous type
    Chen, Peng
    Xuan Thinh Duong
    Li, Ji
    Ward, Lesley A.
    Yan, Lixin
    MATHEMATISCHE ZEITSCHRIFT, 2016, 282 (3-4) : 1033 - 1065
  • [8] Variable Hardy–Lorentz spaces associated with operators satisfying Davies–Gaffney estimates on metric measure spaces of homogeneous type
    Y. He
    Acta Mathematica Hungarica, 2023, 170 : 209 - 243
  • [9] Carleson Measures and Toeplitz Type Operators on Hardy Type Tent Spaces
    Maofa Wang
    Lv Zhou
    Complex Analysis and Operator Theory, 2021, 15
  • [10] Carleson Measures and Toeplitz Type Operators on Hardy Type Tent Spaces
    Wang, Maofa
    Zhou, Lv
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (04)