Twisted Semigroup Algebras

被引:0
|
作者
L. Rigal
P. Zadunaisky
机构
[1] Université Paris 13,
[2] Sorbonne Paris Cité,undefined
[3] LAGA,undefined
[4] UMR CNRS 7539,undefined
[5] Universidad de Buenos Aires,undefined
[6] FCEN,undefined
[7] Departamento de Matemáticas,undefined
来源
关键词
Noncommutative geometry; Quantum toric varieties; Semigroup algebras; Artin-Schelter; Cohen-Macaulay; Artin-Schelter Gorenstein; 16T20; 16E65; 16S35; 16S80; 17B37; 16S38; 14A22;
D O I
暂无
中图分类号
学科分类号
摘要
We study 2-cocycle twists, or equivalently Zhang twists, of semigroup algebras over a field K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb K}$\end{document}. If the underlying semigroup is affine, that is abelian, cancellative and finitely generated, then SpecK[S]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf {Spec}~{\mathbb K}[S]$\end{document} is an affine toric variety over K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb K}$\end{document}, and we refer to the twists of K[S]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb K}[S]$\end{document} as quantum affine toric varieties. We show that every quantum affine toric variety has a “dense quantum torus”, in the sense that it has a localization isomorphic to a quantum torus. We study quantum affine toric varieties and show that many geometric regularity properties of the original toric variety survive the deformation process.
引用
收藏
页码:1155 / 1186
页数:31
相关论文
共 50 条
  • [41] TWISTED TOPOLOGICAL GRAPH ALGEBRAS ARE TWISTED GROUPOID C*-ALGEBRAS
    Kumjian, Alex
    Li, Hui
    JOURNAL OF OPERATOR THEORY, 2017, 78 (01) : 201 - 225
  • [42] ANALYTIC FREE SEMIGROUP ALGEBRAS AND HOPF ALGEBRAS
    Yang, Dilian
    HOUSTON JOURNAL OF MATHEMATICS, 2016, 42 (03): : 919 - 943
  • [43] SEMIGROUP ALGEBRAS WHOSE IDEALS ARE SPANNED BY SEMIGROUP IDEALS
    HOTZEL, E
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 302 - &
  • [44] Divisibility properties of twisted semigroup rings
    Chang, Gyu Whan
    Oh, Dong Yeol
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (03) : 1191 - 1200
  • [45] On homogeneity of radicals of semigroup algebras
    Dooms, A
    Puczylowski, ER
    SEMIGROUP FORUM, 2004, 68 (02) : 311 - 313
  • [46] PRINCIPAL IDEAL SEMIGROUP ALGEBRAS
    JESPERS, E
    WAUTERS, P
    COMMUNICATIONS IN ALGEBRA, 1995, 23 (13) : 5057 - 5076
  • [47] Free semigroup algebras - A survey
    Davidson, KR
    SYSTEMS, APPROXIMATION, SINGULAR INTEGRAL OPERATORS, AND RELATED TOPICS, 2001, 129 : 209 - 240
  • [48] Centrally essential semigroup algebras
    Lyubimtsev, Oleg
    Tuganbaev, Askar
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (06) : 2321 - 2325
  • [49] Locally adequate semigroup algebras
    Ji, Yingdan
    Luo, Yanfeng
    OPEN MATHEMATICS, 2016, 14 : 29 - 48
  • [50] Module amenability for semigroup algebras
    Amini, M
    SEMIGROUP FORUM, 2004, 69 (02) : 243 - 254