Perfect 3-colorings on 6-regular graphs of order 9

被引:0
|
作者
Ziqiu Liu
Yunfeng Zhao
Yuqin Zhang
机构
[1] Tianjin University,School of Mathematics
来源
Frontiers of Mathematics in China | 2019年 / 14卷
关键词
Perfect coloring; equitable partition; regular graph; 05C15; 05C85; 68R10;
D O I
暂无
中图分类号
学科分类号
摘要
The concept of a perfect coloring, introduced by P. Delsarte, generalizes the concept of completely regular code. We study the perfect 3-colorings (also known as the equitable partitions into three parts) on 6-regular graphs of order 9. A perfect n-colorings of a graph is a partition of its vertex set. It splits vertices into n parts A1, A2, . . . , An such that for all i; j ∈ {1, 2, . . . , n}, each vertex of Ai is adjacent to aij vertices of Aj. The matrix A = (aij)n×n is called quotient matrix or parameter matrix. In this article, we start by giving an algorithm to find all different types of 6-regular graphs of order 9. Then, we classify all the realizable parameter matrices of perfect 3-colorings on 6-regular graphs of order 9.
引用
收藏
页码:605 / 618
页数:13
相关论文
共 50 条
  • [11] In most 6-regular toroidal graphs all 5-colorings are Kempe equivalent
    Cranston, Daniel W.
    Mahmoud, Reem
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 104
  • [12] Perfect 4-Colorings of the 3-Regular Graphs of Order at Most 8
    Vahedi, Z.
    Alaeiyan, M.
    Maghasedi, M.
    JOURNAL OF MATHEMATICAL EXTENSION, 2022, 16 (06)
  • [13] Counting Gallai 3-colorings of complete graphs
    Bastos, Josefran de Oliveira
    Benevides, Fabricio Siqueira
    Mota, Guilherme Oliveira
    Sau, Ignasi
    DISCRETE MATHEMATICS, 2019, 342 (09) : 2618 - 2631
  • [14] Exact algorithms for counting 3-colorings of graphs
    Zhu, Enqiang
    Wu, Pu
    Shao, Zehui
    Discrete Applied Mathematics, 2022, 322 : 74 - 93
  • [15] Exact algorithms for counting 3-colorings of graphs
    Zhu, Enqiang
    Wu, Pu
    Shao, Zehui
    DISCRETE APPLIED MATHEMATICS, 2022, 322 : 74 - 93
  • [16] ON THE GENUS OF 5-REGULAR AND 6-REGULAR GRAPHS
    PROULX, VK
    JOURNAL OF GRAPH THEORY, 1983, 7 (02) : 231 - 234
  • [17] Recognizing 3-colorings cycle-patterns on graphs
    De Ita Luna, Guillermo
    Castillo, Javier A.
    PATTERN RECOGNITION LETTERS, 2013, 34 (04) : 433 - 438
  • [18] ON 3-COLORINGS OF BIPARTITE P-THRESHOLD GRAPHS
    TOMESCU, I
    JOURNAL OF GRAPH THEORY, 1987, 11 (03) : 327 - 338
  • [19] On the path partition number of 6-regular graphs
    Feige, Uriel
    Fuchs, Ella
    JOURNAL OF GRAPH THEORY, 2022, 101 (03) : 345 - 378
  • [20] PERFECT 3-COLORINGS OF GP(5,2), GP(6,2), AND GP(7,2) GRAPHS
    Alaeiyan, Mehdi
    Karami, Hamed
    Siasat, Sajjad
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2018, 24 (02) : 47 - 53