Strong- and weak-type estimate for Littlewood–Paley operators associated with Laplace–Bessel differential operator

被引:0
|
作者
Arash Ghorbanalizadeh
Monire Mikaeili Nia
机构
[1] Institute for Advanced Studies in Basic Sciences (IASBS),Department of Mathematics
来源
Banach Journal of Mathematical Analysis | 2022年 / 16卷
关键词
Laplace–Bessel differential operator; -Littlewood–Paley function; Vector-valued Calderón–Zygmund singular integral operator; Generalized shift operator; 42B25; 42B20;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we consider the generalized shift operator associated with the Laplace–Bessel differential operator and define the relevant Littlewood–Paley function operators g and Sγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\gamma }$$\end{document}. We then prove the weak (1, 1) and strong (p, p) boundedness of these operators in vector-valued Calderón–Zygmund approach in some appropriate homogeneous space.
引用
收藏
相关论文
共 50 条
  • [31] On a Weak Type Estimate for Sparse Operators of Strong Type
    Karagulyan, G. A.
    Mnatsakanyan, G.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2019, 54 (04): : 216 - 221
  • [32] A Littlewood–Paley Type Decomposition and Weighted Hardy Spaces Associated with Operators
    Xuan Thinh Duong
    Ji Li
    Lixin Yan
    The Journal of Geometric Analysis, 2016, 26 : 1617 - 1646
  • [33] Limiting weak-type behaviors for Riesz transforms and maximal operators in Bessel setting
    Xianming Hou
    Huoxiong Wu
    Frontiers of Mathematics in China, 2019, 14 : 535 - 550
  • [34] On the BMO spaces associated with the Laplace-Bessel differential operator
    Sezer, Sinem
    Bayrakci, Simten
    Yildiz, Guldane
    Kahraman, Recep
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (07) : 2916 - 2926
  • [35] On Flett potentials associated with the Laplace-Bessel differential operator
    Eryigit, Melih
    Yildiz, Guldane
    Bayrakci, Simten
    Sezer, Sinem
    ANNALS OF FUNCTIONAL ANALYSIS, 2023, 14 (03)
  • [36] An Endpoint Weak-Type Estimate for Multilinear Calderon-Zygmund Operators
    Stockdale, Cody B.
    Wick, Brett D.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (05) : 2635 - 2652
  • [37] Weak type (1,1) bounds for a class of the Littlewood-Paley operators
    Ding, Y
    Xue, QY
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2005, 57 (01) : 183 - 194
  • [38] Weak-type operators and the strong fundamental lemma of real interpolation theory
    Krugljak, N
    Sagher, Y
    Shvartsman, P
    STUDIA MATHEMATICA, 2005, 170 (02) : 173 - 201
  • [39] On the weak-type (1,1) of the uncentered Hardy-Littlewood maximal operator associated with certain measures on the plane
    Savvopoulou, Anna K.
    Wedrychowicz, Christopher M.
    ARKIV FOR MATEMATIK, 2014, 52 (02): : 367 - 382
  • [40] Some generalizations of Bessel and Flett potentials associated to the Laplace-Bessel differential operator
    Aliev, Ilham A.
    Yucel, Sinem
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2018, 29 (03) : 235 - 251