Speech Signal Recovery Using Block Sparse Bayesian Learning

被引:1
|
作者
Irfan Ahmed
Aftab Khan
Nasir Ahmad
Hazrat NasruMinallah
机构
[1] University of Engineering & Technology,Department of Computer Systems Engineering
[2] COMSATS University Islamabad,Department of Electrical and Computer Engineering
关键词
Compressed sensing; BSBL; SSIM; Signal recovery; Wavelet denoising;
D O I
暂无
中图分类号
学科分类号
摘要
Compressed sensing is based on the recovery of original signal from the low-quality and incomplete samples. Recently, ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-norm is used for the estimation of signal elements from the underdetermined set of equations. In this paper, we propose a technique for speech signal recovery called block sparse Bayesian learning. The proposed technique is applied over the random set of speech samples and acquired better performance as compared to ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-based recovery. Apart from the proposed recovery technique, this work is also intended to develop a trained and efficient sampling matrix through offline training. In this work, we apply structural similarity index as a metric to compare the performance of the proposed technique with an existing ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document} based recovery. Sparse Bayesian learning and ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-norm recovery are applied over the selected audio files from the datasets. The dataset consists of speech signals from three different languages: Urdu, Pashto and English. Structural similarity between the recovered and original speech signals is used as a metric to compare the performance of BSBL with ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-norm minimization. The comparison based on structural similarity index shows the effectiveness of the proposed technique.
引用
收藏
页码:1567 / 1579
页数:12
相关论文
共 50 条
  • [31] DOA Estimation Using Block Variational Sparse Bayesian Learning
    Huang Qinghua
    Zhang Guangfei
    Fang Yong
    CHINESE JOURNAL OF ELECTRONICS, 2017, 26 (04) : 768 - 772
  • [32] ROBUST BAYESIAN METHOD FOR SIMULTANEOUS BLOCK SPARSE SIGNAL RECOVERY WITH APPLICATIONS TO FACE RECOGNITION
    Fedorov, Igor
    Giri, Ritwik
    Rao, Bhaskar D.
    Nguyen, Truong Q.
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 3872 - 3876
  • [33] A recovery algorithm for multitask compressive sensing based on block sparse Bayesian learning
    Wen Fang-Qing
    Zhang Gong
    Ben De
    ACTA PHYSICA SINICA, 2015, 64 (07)
  • [34] Bayesian learning for sparse signal reconstruction
    Wipf, DP
    Rao, BD
    2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL VI, PROCEEDINGS: SIGNAL PROCESSING THEORY AND METHODS, 2003, : 601 - 604
  • [35] Robust Sparse Signal Recovery in Impulsive Noise Using Bayesian Methods
    Song, Jinyang
    Shen, Feng
    Chen, Xiaobo
    Zhao, Di
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2018, E101A (01): : 273 - 278
  • [36] LOW-RANK AND JOINT-SPARSE SIGNAL RECOVERY FOR SPATIALLY AND TEMPORALLY CORRELATED DATA USING SPARSE BAYESIAN LEARNING
    Zhang, Yanbin
    Li, Yangqing
    Yin, Changchuan
    He, Kesen
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 4719 - 4723
  • [37] A fast block sparse Kaczmarz algorithm for sparse signal recovery
    Niu, Yu-Qi
    Zheng, Bing
    SIGNAL PROCESSING, 2025, 227
  • [38] MULTIPITCH ESTIMATION USING BLOCK SPARSE BAYESIAN LEARNING AND INTRA-BLOCK CLUSTERING
    Shi, Liming
    Jensen, Jesper Rindom
    Nielsen, Jesper Kjaer
    Christensen, Mads Graesboll
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 666 - 670
  • [39] Recovery of Independent Sparse Sources From Linear Mixtures Using Sparse Bayesian Learning
    Fouladi, Seyyed Hamed
    Chiu, Sung-En
    Rao, Bhaskar D.
    Balasingham, Ilangko
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (24) : 6332 - 6346
  • [40] Block Sparse Bayesian Recovery with Correlated LSM Prior
    Zhao, Juan
    Bai, Xia
    Shan, Tao
    Tao, Ran
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021