Variable-coefficient symbolic computation approach for finding multiple rogue wave solutions of nonlinear system with variable coefficients

被引:0
|
作者
Jian-Guo Liu
Wen-Hui Zhu
Yan He
机构
[1] Jiangxi University of Chinese Medicine,College of Computer
[2] Beijing University of Posts and Telecommunications,School of science
[3] Nanchang Institute of Science and Technology,Institute of artificial intelligence
关键词
Variable-coefficient symbolic computation approach; Rogue wave; Variable-coefficient Kadomtsev–Petviashvili equation; 35C08; 68M07; 33F10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a variable-coefficient symbolic computation approach is proposed to solve the multiple rogue wave solutions of nonlinear equation with variable coefficients. As an application, a (2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2+1$$\end{document})-dimensional variable-coefficient Kadomtsev–Petviashvili equation is investigated. The multiple rogue wave solutions are obtained and their dynamic features are shown in some 3D and contour plots.
引用
收藏
相关论文
共 50 条
  • [31] Viewing the Solar System via a variable-coefficient nonlinear dispersive-wave system
    Gao, Xin-Yi
    Guo, Yong-Jiang
    Shan, Wen-Rui
    ACTA MECHANICA, 2020, 231 (10) : 4415 - 4420
  • [32] Energy decay of solutions for a variable-coefficient viscoelastic wave equation with a weak nonlinear dissipation
    Cao, Xiaomin
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (02) : 021509
  • [33] Soliton-like solutions and periodic form solutions for two variable-coefficient evolution equations using symbolic computation
    B. Li
    Y. Chen
    H. Q. Zhang
    Acta Mechanica, 2005, 174 : 77 - 89
  • [34] The Evolution of Nonlinear Wave Packets in Variable-coefficient Ostrovsky Equation
    Alias, Azwani
    PROCEEDING OF THE 25TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM25): MATHEMATICAL SCIENCES AS THE CORE OF INTELLECTUAL EXCELLENCE, 2018, 1974
  • [35] Multi-soliton solutions and a Backlund transformation for a generalized variable-coefficient higher-order nonlinear Schrodinger equation with symbolic computation
    Meng, Xiang-Hua
    Liu, Wen-Jun
    Zhu, Hong-Wu
    Zhang, Chun-Yi
    Tian, Bo
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (01) : 97 - 107
  • [36] VARIABLE-COEFFICIENT WAVE-EQUATIONS WITH EXACT SPREADING SOLUTIONS
    COUCH, WE
    TORRENCE, RJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (20): : 5491 - 5504
  • [37] Lax pair, rogue-wave and soliton solutions for a variable-coefficient generalized nonlinear Schrodinger equation in an optical fiber, fluid or plasma
    Zuo, Da-Wei
    Gao, Yi-Tian
    Xue, Long
    Feng, Yu-Jie
    OPTICAL AND QUANTUM ELECTRONICS, 2016, 48 (01) : 1 - 14
  • [38] Backlund transformation and conservation laws for the variable-coefficient N-coupled nonlinear Schrodinger equations with symbolic computation
    Meng, Xiang Hua
    Tian, Bo
    Xu, Tao
    Zhang, Hai Qiang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (05) : 969 - 974
  • [39] Symbolic Computation on Soliton Solutions for Variable-coefficient Quantum Zakharov-Kuznetsov Equation in Magnetized Dense Plasmas
    Awawdeh, Fadi
    Al-Shara', Safwan
    Jaradat, H. M.
    Alomari, A. K.
    Alshorman, Rafat
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2014, 15 (01) : 35 - 45
  • [40] Similarity reductions for a generalized variable-coefficient Kadomtsev-Petviashvili equation with symbolic computation
    Bo, T
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1999, 10 (06): : 1089 - 1097