Lagrangian systems of conservation laws

被引:2
|
作者
Bruno Després
机构
[1] Commissariat à l'Energie Atomique,
[2] BP 12,undefined
[3] 91 680 Bruyères le Chatel,undefined
[4] France; e-mail: despres@bruyeres.cea.fr ,undefined
[5] Laboratoire d'analyse numérique,undefined
[6] Université Paris VI,undefined
[7] 4 place Jussieu,undefined
[8] 75252 Paris,undefined
[9] France; e-mail: despres@ann.jussieu.fr ,undefined
关键词
Entropy; Numerical Scheme; Jacobian Matrix; Canonical Formalism; Smooth Solution;
D O I
10.1007/PL00005465
中图分类号
学科分类号
摘要
We study the mathematical structure of 1D systems of conservation laws written in the Lagrange variable. Modifying the symmetrization proof of systems of conservation laws with three hypothesis, we prove that these models have a canonical formalism. These hypothesis are i) the entropy flux is zero, ii) Galilean invariance, iii) reversibility for smooth solutions. Then we study a family of numerical schemes for the solution of these systems. We prove that they are entropy consistent. We also prove from general considerations the symmetry of the spectrum of the Jacobian matrix.
引用
收藏
页码:99 / 134
页数:35
相关论文
共 50 条
  • [31] “Irregularization” of systems of conservation laws
    Hunter Swan
    Woosong Choi
    Stefanos Papanikolaou
    Matthew Bierbaum
    Yong S. Chen
    James P. Sethna
    Materials Theory, 2 (1):
  • [32] Duality for systems of conservation laws
    Sergey I. Agafonov
    Letters in Mathematical Physics, 2020, 110 : 1123 - 1139
  • [33] Duality for systems of conservation laws
    Agafonov, Sergey I.
    LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (06) : 1123 - 1139
  • [34] Noether theorem for action-dependent Lagrangian functions: conservation laws for non-conservative systems
    M. J. Lazo
    J. Paiva
    G. S. F. Frederico
    Nonlinear Dynamics, 2019, 97 : 1125 - 1136
  • [35] A Class of Positive Semi-discrete Lagrangian–Eulerian Schemes for Multidimensional Systems of Hyperbolic Conservation Laws
    Eduardo Abreu
    Jean François
    Wanderson Lambert
    John Pérez
    Journal of Scientific Computing, 2022, 90
  • [36] Noether theorem for action-dependent Lagrangian functions: conservation laws for non-conservative systems
    Lazo, M. J.
    Paiva, J.
    Frederico, G. S. F.
    NONLINEAR DYNAMICS, 2019, 97 (02) : 1125 - 1136
  • [37] WAVE-PROPAGATION AND SYMMETRICAL HYPERBOLIC SYSTEMS OF CONSERVATION-LAWS WITH CONSTRAINED FIELD VARIABLES .3. LAGRANGIAN SYSTEMS
    STRUMIA, A
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1991, 106 (07): : 773 - 779
  • [38] Semi-Lagrangian Approximation of Conservation Laws in the Flow around a Wedge
    Shaydurov V.V.
    Shchepanovskaya G.I.
    Yakubovich M.V.
    Lobachevskii Journal of Mathematics, 2018, 39 (7) : 936 - 948
  • [39] A fully semi-Lagrangian technique for viscous and dispersive conservation laws
    Ferretti, R.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 526
  • [40] Symmetries and the explanation of conservation laws in the light of the inverse problem in Lagrangian mechanics
    Smith, Sheldon R.
    STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2008, 39 (02): : 325 - 345