Lagrangian systems of conservation laws

被引:2
|
作者
Bruno Després
机构
[1] Commissariat à l'Energie Atomique,
[2] BP 12,undefined
[3] 91 680 Bruyères le Chatel,undefined
[4] France; e-mail: despres@bruyeres.cea.fr ,undefined
[5] Laboratoire d'analyse numérique,undefined
[6] Université Paris VI,undefined
[7] 4 place Jussieu,undefined
[8] 75252 Paris,undefined
[9] France; e-mail: despres@ann.jussieu.fr ,undefined
关键词
Entropy; Numerical Scheme; Jacobian Matrix; Canonical Formalism; Smooth Solution;
D O I
10.1007/PL00005465
中图分类号
学科分类号
摘要
We study the mathematical structure of 1D systems of conservation laws written in the Lagrange variable. Modifying the symmetrization proof of systems of conservation laws with three hypothesis, we prove that these models have a canonical formalism. These hypothesis are i) the entropy flux is zero, ii) Galilean invariance, iii) reversibility for smooth solutions. Then we study a family of numerical schemes for the solution of these systems. We prove that they are entropy consistent. We also prove from general considerations the symmetry of the spectrum of the Jacobian matrix.
引用
收藏
页码:99 / 134
页数:35
相关论文
共 50 条