Author Correction: Low-count whole-body PET with deep learning in a multicenter and externally validated study

被引:0
|
作者
Akshay S. Chaudhari
Erik Mittra
Guido A. Davidzon
Praveen Gulaka
Harsh Gandhi
Adam Brown
Tao Zhang
Shyam Srinivas
Enhao Gong
Greg Zaharchuk
Hossein Jadvar
机构
[1] Stanford University,Department of Radiology
[2] Stanford University,Department of Biomedical Data Science
[3] Subtle Medical,Division of Diagnostic Radiology
[4] Oregon Health & Science University,Department of Radiology
[5] University of Pittsburgh Medical Center,Department of Radiology
[6] University of Southern California,undefined
来源
npj Digital Medicine | / 4卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Deep learning based generation of high-count preclinical [18F]-FDG PET images from low-count [18F]-FDG PET images
    Dutta, Kaushik
    Whitehead, Timothy
    Laforest, Richard
    Jha, Abhinav
    Shoghi, Kooresh
    JOURNAL OF NUCLEAR MEDICINE, 2022, 63
  • [42] Whole-body PET estimation from low count statistics using cycle-consistent generative adversarial networks
    Lei, Yang
    Dong, Xue
    Wang, Tonghe
    Higgins, Kristin
    Liu, Tian
    Curran, Walter J.
    Mao, Hui
    Nye, Jonathon A.
    Yang, Xiaofeng
    PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (21):
  • [43] Impact of respiratory motion correction on the detection of small lesions in whole-body PET imaging: a simulation study
    Marache-Francisco, S.
    Lamare, F.
    Fayad, H.
    Visvikis, D.
    Prost, R.
    Rouet, J. -M.
    Lartizien, C.
    2010 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD (NSS/MIC), 2010, : 3531 - 3533
  • [44] Impact of partial volume correction in whole-body PET imaging: a computer-aided detection study
    Lartizien, C.
    Marache-Francisco, S.
    Le Pogam, A.
    Tomei, S.
    Visvikis, D.
    2009 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-5, 2009, : 3214 - +
  • [45] Deep learninga(sic)'based CT-free attenuation and scatter correction for pediatric whole-body PET imaging
    Han, Chenyang
    Trout, Andrew
    MacLean, Joseph
    Zhu, Jieyuhan
    Tang, Jing
    JOURNAL OF NUCLEAR MEDICINE, 2024, 65
  • [46] Generation of Whole-Body FDG Parametric Ki Images From Static PET Images Using Deep Learning
    Miao, Tianshun
    Zhou, Bo
    Liu, Juan
    Guo, Xueqi
    Liu, Qiong
    Xie, Huidong
    Chen, Xiongchao
    Chen, Ming-Kai
    Wu, Jing
    Carson, Richard E. E.
    Liu, Chi
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2023, 7 (05) : 465 - 472
  • [47] CT-Less Whole-Body Bone Segmentation of PET Images Using a Multimodal Deep Learning Network
    Bao, Nan
    Zhang, Jiaxin
    Li, Zhikun
    Wei, Shiyu
    Zhang, Jiazhen
    Greenwald, Stephen E.
    Onofrey, John A.
    Lu, Yihuan
    Xu, Lisheng
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (02) : 1151 - 1164
  • [48] Deep Semisupervised Transfer Learning for Fully Automated Whole-Body Tumor Quantification and Prognosis of Cancer on PET/CT
    Leung, Kevin H.
    Rowe, Steven P.
    Sadaghiani, Moe S.
    Leal, Jeffrey P.
    Mena, Esther
    Choyke, Peter L.
    Du, Yong
    Pomper, Martin G.
    JOURNAL OF NUCLEAR MEDICINE, 2024, 65 (04) : 643 - 650
  • [49] CT-less Direct Correction of Attenuation and Scatter in the Image Space Using Deep Learning for Whole-Body FDG PET: Potential Benefits and Pitfalls
    Yang, Jaewon
    Sohn, Jae Ho
    Behr, Spencer C.
    Gullberg, Grant T.
    Seo, Youngho
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (02)
  • [50] Influence of Bones and Constant Attenuation Factors in PET/CT: Learning for MR-based Attenuation Correction in Whole-Body MR/PET
    Martinez-Moeller, A.
    Souvatzoglou, M.
    Bundschuh, R. A.
    Delso, G.
    Ziegler, S. I.
    Navab, N.
    Schwaiger, M.
    Nekolla, S. G.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2008, 35 : S193 - S194