Boundedness and stabilization in a quasilinear forager–exploiter model with volume-filling effects

被引:0
|
作者
Yao Chen
Zhongping Li
机构
[1] China West Normal University,College of Mathematics and Information
关键词
Forager–exploiter model; Chemotaxis; Nonlinear diffusions; Volume-filling effects; Boundedness and stabilization; 35A01; 35A09; 35K57; 92C17;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with a forager–exploiter model involving nonlinear diffusions and volume-filling effects ut=∇·((u+1)m∇u)-∇·(S1(u)∇w),x∈Ω,t>0,vt=∇·((v+1)l∇v)-∇·(S2(v)∇u),x∈Ω,t>0,wt=Δw-(u+v)w-μw+r(x,t),x∈Ω,t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{aligned}&u_t=\nabla \cdot ((u+1)^m\nabla u)-\nabla \cdot (S_1(u)\nabla w), ~&x\in \Omega , t>0,\\&v_t=\nabla \cdot ((v+1)^l\nabla v)-\nabla \cdot (S_2(v)\nabla u), ~&x\in \Omega , t>0,\\&w_t=\Delta w-(u+v)w-\mu w+r(x,t), ~&x\in \Omega , t>0 \end{aligned} \right. \end{aligned}$$\end{document}under homogeneous Neumann boundary conditions in a smooth bounded domain Ω⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^n$$\end{document} with n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 1$$\end{document}, where μ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu >0$$\end{document}, m,l∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m,l\in \mathbb R$$\end{document} and r∈C1(Ω¯×[0,∞))∩L∞(Ω×(0,∞))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\in C^1(\bar{\Omega }\times [0,\infty ))\cap L^\infty (\Omega \times (0,\infty ))$$\end{document} is a given nonnegative function, the initial data u0,v0,w0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0, v_0, w_0$$\end{document} satisfy 0≤u0,v0≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le u_0, v_0\le 1$$\end{document} and w0≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_0\ge 0$$\end{document}. Volume-filling effects account for an ordinary form by taking S1(u)=u(1-u),S2(v)=v(1-v).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} S_1(u)=u(1-u), ~S_2(v)=v(1-v). \end{aligned}$$\end{document}It is proved that the corresponding initial-boundary value problem admits a unique global bounded classical solution. Furthermore, if r satisfies ∫tt+1∫Ωr→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int \limits _t^{t+1}\int \limits _\Omega r\rightarrow 0$$\end{document} as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow \infty $$\end{document}, then the global bounded classical solution (u, v, w) that converges to 1|Ω|∫Ωu0,1|Ω|∫Ωv0,0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{1}{|\Omega |}\int \limits _\Omega u_0, \frac{1}{|\Omega |}\int \limits _\Omega v_0,0\right) $$\end{document} as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow \infty $$\end{document}.
引用
收藏
相关论文
共 45 条
  • [31] Global Bifurcation of Stationary Solutions for a Volume-Filling Chemotaxis Model with Logistic Growth
    Dong, Yaying
    Li, Shanbing
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (13):
  • [32] Traveling wavefronts for a reaction-diffusion-chemotaxis model with volume-filling effect
    Man-jun Ma
    Hui Li
    Mei-yan Gao
    Ji-cheng Tao
    Ya-zhou Han
    Applied Mathematics-A Journal of Chinese Universities, 2017, 32 : 108 - 116
  • [33] Long-time behaviour of solutions to a chemotaxis model with volume-filling effect
    Wrzosek, D
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 : 431 - 444
  • [34] Traveling wavefronts for a reaction-diffusion-chemotaxis model with volume-filling effect
    Ma, Man-jun
    Li, Hui
    Gao, Mei-yan
    Tao, Ji-cheng
    Han, Ya-zhou
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2017, 32 (01) : 108 - 116
  • [35] From a discrete model of chemotaxis with volume-filling to a generalized Patlak-Keller-Segel model
    Bubba, Federica
    Lorenzi, Tommaso
    Macfarlane, Fiona R.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2237):
  • [36] Traveling waves in a coarse-grained model of volume-filling cell invasion: Simulations and comparisons
    Crossley, Rebecca M.
    Maini, Philip K.
    Lorenzi, Tommaso
    Baker, Ruth E.
    STUDIES IN APPLIED MATHEMATICS, 2023, 151 (04) : 1471 - 1497
  • [37] The steady states and convergence to equilibria for a 1-D chemotaxis model with volume-filling effect
    Zhang, Yanyan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (01) : 25 - 40
  • [38] On steady-state solutions of a 1-D chemotaxis model with volume-filling effect
    Li, Fang
    Zhang, Yanyan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (01) : 1 - 18
  • [39] Global bifurcation and stability of steady states for a reaction-diffusion-chemotaxis model with volume-filling effect
    Ma, Manjun
    Wang, Zhi-An
    NONLINEARITY, 2015, 28 (08) : 2639 - 2660
  • [40] Chemotaxis-driven pattern formation for a reaction-diffusion-chemotaxis model with volume-filling effect
    Ma, Manjun
    Gao, Meiyan
    Tong, Changqing
    Han, Yazhou
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (05) : 1320 - 1340