Coloured Permutations Containing and Avoiding Certain Patterns

被引:0
|
作者
Toufik Mansour
机构
[1] Chalmers University of Technology,Department of Mathematics
关键词
alternating permutations; restricted permutations; generating functions; Chebyshev polynomials;
D O I
10.1007/s00026-003-0190-2
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ s^{(r)}_{n} $$ \end{document} be the set of all coloured permutations on the symbols 1, 2, . . . , n with colours 1, 2, . . . , r, which is the analogous of the symmetric group when r = 1, and the hyperoctahedral group when r = 2. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ I \subseteq \{1,2,\ldots,r\} $$ \end{document} be a subset of d colours; we define \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ T_{k,r}^m (l) $$ \end{document} to be the set of all coloured permutations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Phi \in S_{k}^{(r)} \quad \mathrm{such\quad that}\quad \Phi_1 = M^{(c)} \quad \mathrm{where}\quad c \in I$$ \end{document}. We prove that the number of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ T_{k,r}^{m} (l) $$ \end{document} -avoiding coloured permutations in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ S_{n}^{(r)} \quad \mathrm{equals}\quad (k-1)!r^{k-1} \prod_{j=k}^n h_j \quad \mathrm{for}\quad n\geq k \quad \mathrm{where} \quad h_j = (r-d) j+(k-1)d $$ \end{document}. We then prove that for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Phi \in T_{k,r}^{1} (I) \quad(\mathrm{or \quad any}\quad \Phi \in T_{k,r}^{k} (I)) $$ \end{document}, the number of coloured permutations in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ S-{n}^{(r)} $$ \end{document} which avoid all patterns in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ T_{k,r}^{1} (I) \quad(\mathrm{or \quad in}\quad T_{k,r}^{k} (I)) $$ \end{document} except for Φ and contain Φ exactly once equals \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \prod_{j=k}^n h_j \cdot \sum_{j=k}^{n} \frac{1}{hj \quad} \mathrm{for}\quad n \geq k $$ \end{document}. Finally, for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Phi \in T_{k,r}^{m} (I), 2\leq m \leq k-1 $$ \end{document}, this number equals \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \prod_{j=k+1}^{n} h_j \quad \mathrm{for} \quad n\geq k+1 $$ \end{document}. These results generalize recent results due to Mansour, Mansour and West, and Simion.
引用
收藏
页码:349 / 355
页数:6
相关论文
共 50 条
  • [41] Almost avoiding permutations
    Brignall, Robert
    Ekhad, Shalosh B.
    Smith, Rebecca
    Vatter, Vincent
    DISCRETE MATHEMATICS, 2009, 309 (23-24) : 6626 - 6631
  • [42] Shape avoiding permutations
    Adin, RM
    Roichman, Y
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2002, 97 (01) : 162 - 176
  • [43] On the sub-permutations of pattern avoiding permutations
    Disanto, Filippo
    Wiehe, Thomas
    DISCRETE MATHEMATICS, 2014, 337 : 127 - 141
  • [44] Permutations of a multiset avoiding permutations of length 3
    Albert, MH
    Aldred, REL
    Atkinson, MD
    Handley, C
    Holton, D
    EUROPEAN JOURNAL OF COMBINATORICS, 2001, 22 (08) : 1021 - 1031
  • [45] Crossings over Permutations Avoiding Some Pairs of Patterns of Length Three
    Rakotomamonjy, Paul M.
    Andriantsoa, Sandrataniaina R.
    Randrianarivony, Arthur
    JOURNAL OF INTEGER SEQUENCES, 2020, 23 (06)
  • [46] Finite transition matrices for permutations avoiding pairs of length four patterns
    Kremer, D
    Shiu, WC
    DISCRETE MATHEMATICS, 2003, 268 (1-3) : 171 - 183
  • [47] Enumerating Permutations Avoiding Three Babson-Steingrímsson Patterns
    Antonio Bernini
    Luca Ferrari
    Renzo Pinzani
    Annals of Combinatorics, 2005, 9 : 137 - 162
  • [48] On the combinatorics of quadrant marked mesh patterns in 132-avoiding permutations
    Borie, Nicolas
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2016, 64 : 140 - 153
  • [49] Clustering of consecutive numbers in permutations avoiding a pattern of length three or avoiding a finite number of simple patterns
    Pinsky, Ross G.
    DISCRETE MATHEMATICS, 2024, 347 (12)
  • [50] Enumeration and Wilf-classification of permutations avoiding five patterns of length 4
    Mansour, Toufik
    CONTRIBUTIONS TO MATHEMATICS, 2020, 1 : 1 - 10