DeepPricing: pricing convertible bonds based on financial time-series generative adversarial networks

被引:0
|
作者
Xiaoyu Tan
Zili Zhang
Xuejun Zhao
Shuyi Wang
机构
[1] Peking University,Guanghua School of Management
[2] Harvest Fund Management,Department of Mathematics
[3] Zhejiang University,undefined
来源
关键词
Convertible bonds; Generative adversarial network; Time-series simulation; Pricing; Investment strategy; Artificial intelligence; G1; G12; C5; C6; C63;
D O I
暂无
中图分类号
学科分类号
摘要
Convertible bonds are an important segment of the corporate bond market, however, as hybrid instruments, convertible bonds are difficult to value because they depend on variables related to the underlying stock, the fixed-income part, and the interaction between these components. Besides, embedded options, such as conversion, call, and put provisions are often restricted to certain periods, may vary over time, and are subject to additional path-dependent features of the state variables. Moreover, the most challenging problem in convertible bond valuation is the underlying stock return process modeling as it retains various complex statistical properties. In this paper, we propose DeepPricing, a novel data-driven convertible bonds pricing model, which is inspired by the recent success of generative adversarial networks (GAN), to address the above challenges. The method introduces a new financial time-series generative adversarial networks (FinGAN), which is able to reproduce risk-neutral stock return process that retains the unique statistical properties such as the fat-tailed distributions, the long-range dependence, and the asymmetry structure etc., and then transit to its risk-neutral distribution. Thus it is more flexible and accurate to capture the dynamics of the underlying stock return process and keep the rich set of real-world convertible bond specifications compared with previous model-driven models. The experiments on the Chinese convertible bond market demonstrate the effectiveness of DeepPricing model. Compared with the convertible bond market prices, our model has a better convertible bonds pricing performance than both model-driven models, i.e. Black-Scholes, the constant elasticity of variance, GARCH, and the state-of-the-art GAN-based models, i.e. FinGAN-MLP, FinGAN-LSTM. Moreover, our model has a better fitting capacity for higher-volatility convertible bonds and the overall convertible bond market implied volatility smirk, especially for equity-liked convertible bonds, convertible bonds trading in the bull market, and out-of-the-money convertible bonds. Furthermore, the Long-Short and Long-Only investment strategies based on our model earn a significant annualized return with 41.16% and 31.06%, respectively, for the equally-weighted portfolio during the sample period.
引用
收藏
相关论文
共 50 条
  • [11] Sparse self-attention guided generative adversarial networks for time-series generation
    Nourhan Ahmed
    Lars Schmidt-Thieme
    International Journal of Data Science and Analytics, 2023, 16 : 421 - 434
  • [12] Sparse self-attention guided generative adversarial networks for time-series generation
    Ahmed, Nourhan
    Schmidt-Thieme, Lars
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2023, 16 (04) : 421 - 434
  • [13] Generating Time-Series Data Using Generative Adversarial Networks for Mobility Demand Prediction
    Chatterjee, Subhajit
    Byun, Yung-Cheol
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (03): : 5507 - 5525
  • [14] Improving Astronomical Time-series Classification via Data Augmentation with Generative Adversarial Networks
    Garcia-Jara, German
    Protopapas, Pavlos
    Estevez, Pablo A.
    ASTROPHYSICAL JOURNAL, 2022, 935 (01):
  • [15] Contingent convertible bonds in financial networks
    Calice, Giovanni
    Sala, Carlo
    Tantari, Daniele
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [16] Contingent convertible bonds in financial networks
    Giovanni Calice
    Carlo Sala
    Daniele Tantari
    Scientific Reports, 13
  • [17] Performance of GPU for Pricing Financial Derivatives: Convertible Bonds
    Lyuu, Yuh-Dauh
    Wen, Kuo-Wei
    Wu, Yi-Chun
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2014, 30 (01) : 141 - 155
  • [18] Performance of GPU for pricing financial derivatives: Convertible bonds
    1600, Institute of Information Science (30):
  • [19] Enhancing time-series access control using deep recurrent neural networks and generative adversarial networks
    Mohammadi, Nasibeh
    Rezakhani, Afshin
    Javadi, Hamid Haj Seyyed
    Asghari, Parvaneh
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2025, 24 (01)
  • [20] Multi-modal generative adversarial networks for synthesizing time-series structural impact responses
    Thompson, Zhymir
    Downey, Austin R. J.
    Bakos, Jason D.
    Wei, Jie
    Dodson, Jacob
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 204