A non-parametric estimator for setting reservation prices in procurement auctions

被引:3
|
作者
Bichler M. [1 ]
Kalagnanam J.R. [2 ]
机构
[1] Department of Informatics, Technical University of Munich, 85748 Garching/Munich
[2] IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
关键词
Auction theory; Non-parametric estimation; Reservation prices;
D O I
10.1007/s10799-006-9180-5
中图分类号
学科分类号
摘要
Electronic auction markets collect large amounts of auction field data. This enables a structural estimation of the bid distributions and the possibility to derive optimal reservation prices. In this paper we propose a new approach to setting reservation prices. In contrast to traditional auction theory we use the buyer's risk statement for getting a winning bid as a key criterion to set an optimal reservation price. The reservation price for a given probability can then be derived from the distribution function of the observed drop-out bids. In order to get an accurate model of this function, we propose a nonparametric technique based on kernel distribution function estimators and the use of order statistics. We improve our estimator by additional information, which can be observed about bidders and qualitative differences of goods in past auctions rounds (e.g. different delivery times). This makes the technique applicable to RFQs and multi-attribute auctions, with qualitatively differentiated offers. © Springer Science + Business Media, LLC 2006.
引用
收藏
页码:157 / 169
页数:12
相关论文
共 50 条
  • [31] A Non-Parametric Approach to Develop a Bayesian Estimator for Tacrolimus in Renal Transplant Patients
    Ben Fredj, N.
    Woillard, J. B.
    Debord, J.
    Chaabane, A.
    Chadly, Z.
    Ben Fadhel, N.
    Boughattas, N.
    Marquet, P.
    Saint-Marcoux, F.
    Aouam, K.
    THERAPEUTIC DRUG MONITORING, 2013, 35 (05) : 679 - 679
  • [32] PARAMETRIC AND NON-PARAMETRIC MINIMA
    ANZELLOTTI, G
    MANUSCRIPTA MATHEMATICA, 1984, 48 (1-3) : 103 - 115
  • [33] A transitional non-parametric maximum pseudo-likelihood estimator for disease mapping
    Biggeri, A
    Dreassi, E
    Lagazio, C
    Böhning, D
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2003, 41 (3-4) : 617 - 629
  • [34] First and Second Order Asymptotic Bias Correction of Nonlinear Estimators in a Non-Parametric Setting and an Application to the Smoothed Maximum Score Estimator
    Iglesias, Emma M.
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2010, 14 (03):
  • [35] A new kernel distribution function estimator based on a non-parametric transformation of the data
    Swanepoel, JWH
    Van Graan, FC
    SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (04) : 551 - 562
  • [36] TCMI: a non-parametric mutual-dependence estimator for multivariate continuous distributions
    Benjamin Regler
    Matthias Scheffler
    Luca M. Ghiringhelli
    Data Mining and Knowledge Discovery, 2022, 36 : 1815 - 1864
  • [37] TCMI: a non-parametric mutual-dependence estimator for multivariate continuous distributions
    Regler, Benjamin
    Scheffler, Matthias
    Ghiringhelli, Luca M.
    DATA MINING AND KNOWLEDGE DISCOVERY, 2022, 36 (05) : 1815 - 1864
  • [38] Non-parametric hazard function estimation using the Kaplan-Meier estimator
    Kim, C
    Bae, W
    Choi, H
    Park, BU
    JOURNAL OF NONPARAMETRIC STATISTICS, 2005, 17 (08) : 937 - 948
  • [39] Auctions Versus Fixed Prices: Lessons from a Procurement Pilot
    Kuhmonen, S.
    EUROPEAN JOURNAL OF PUBLIC HEALTH, 2023, 33
  • [40] Cumulative estimation in semi-parametric models - (Non-parametric estimator base for a general weight function)
    Hu, HC
    Sun, HY
    SURVEY REVIEW, 2005, 38 (296) : 158 - 164