A parameter optimization heuristic for a temperature estimation model

被引:0
|
作者
J. Cole Smith
Dale L. Henderson
Alfonso Ortega
Jason DeVoe
机构
[1] The University of Florida,Department of Industrial and Systems Engineering
[2] United States Military Academy,Department of Systems Engineering
[3] Villanova University,Department of Mechanical Engineering
[4] ASE Technologies,undefined
来源
Optimization and Engineering | 2009年 / 10卷
关键词
Heuristic; Nonconvex optimization; Parameter estimation; Compact thermal models;
D O I
暂无
中图分类号
学科分类号
摘要
We present a heuristic technique for solving a parameter estimation problem that arises in modeling the thermal behavior of electronic chip packages. Compact Thermal Models (CTMs) are network models of steady state thermal behavior, which show promise in augmenting the use of more detailed and computationally expensive models. The CTM parameter optimization problem that we examine is a nonconvex optimization problem in which we seek a set of CTM parameters that best predicts, under general conditions, the thermal response of a particular chip package geometry that has been tested under a small number of conditions. We begin by developing a nonlinear programming formulation for this parameter optimization problem, and then develop an algorithm that uses special characteristics of the optimization problem to quickly generate heuristic solutions. Our algorithm descends along a series of solutions to one-dimensional nonconvex optimization problems, obtaining a locally optimal set of model parameters at modest computational cost. Finally, we provide some experimental results and recommendations for extending this research.
引用
收藏
页码:19 / 42
页数:23
相关论文
共 50 条
  • [21] Hybrid particle swarm optimization for parameter estimation of Muskingum model
    Ouyang, Aijia
    Li, Kenli
    Tung Khac Truong
    Sallam, Ahmed
    Sha, Edwin H-M.
    NEURAL COMPUTING & APPLICATIONS, 2014, 25 (7-8): : 1785 - 1799
  • [22] PARAMETER ESTIMATION TO AN ANEMIA MODEL USING THE PARTICLE SWARM OPTIMIZATION
    Ahmad, Arshed A.
    Sari, Murat
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2019, 37 (04): : 1331 - 1343
  • [23] Parameter Estimation for Asymptotic Regression Model by Particle Swarm Optimization
    Xu, Xing
    Li, Yuanxiang
    Wu, Yu
    Du, Xin
    WORLD SUMMIT ON GENETIC AND EVOLUTIONARY COMPUTATION (GEC 09), 2009, : 679 - 686
  • [24] Parameter estimation and treatment optimization in a stochastic model for immunotherapy of cancer
    Diabate, Modibo
    Coquille, Loren
    Samson, Adeline
    JOURNAL OF THEORETICAL BIOLOGY, 2020, 502
  • [25] Estimation of Muskingum parameter by meta-heuristic algorithms
    Orouji, Hossein
    Bozorg-Haddad, Omid
    Fallah-Mehdipour, Elahe
    Marino, Miguel A.
    Barati, Reza
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-WATER MANAGEMENT, 2014, 167 (06) : 365 - 367
  • [26] Heuristic methods for parameter estimation in a smart beam structure
    Libo-on, Jeoffrey T.
    Lope, Jose Ernie C.
    del Rosario, Ricardo C. H.
    WORLD CONGRESS ON ENGINEERING 2008, VOLS I-II, 2008, : 896 - +
  • [27] Estimation of Muskingum parameter by meta-heuristic algorithms
    Orouji, Hossein
    Bozorg-Haddad, Omid
    Fallah-Mehdipour, Elahe
    Marino, Miguel A.
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-WATER MANAGEMENT, 2013, 166 (06) : 315 - 324
  • [28] The use of heuristic optimization algorithms to facilitate maximum simulated likelihood estimation of random parameter logit models
    Hole, Arne Risa
    Yoo, Hong Il
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2017, 66 (05) : 997 - 1013
  • [29] An Heuristic Model For Port Optimization
    Ilie, Anamaria
    Operea, Cristina
    Olteanu, Sergiu
    Dinu, Oana
    Rusca, Florin
    12TH INTERNATIONAL CONFERENCE INTERDISCIPLINARITY IN ENGINEERING (INTER-ENG 2018), 2019, 32 : 975 - 982
  • [30] A heuristic for free parameter optimization with Support Vector Machines
    Boardman, Matthew
    Trappenberg, Thomas
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 610 - +