Invertibility of Bergman Toeplitz operators with harmonic polynomial symbols

被引:0
|
作者
Nanxing Guan
Xianfeng Zhao
机构
[1] Chuxiong Normal University,School of Mathematics and Statistics
[2] Chongqing University,College of Mathematics and Statistics
来源
Science China Mathematics | 2020年 / 63卷
关键词
Bergman space; Toeplitz operator; harmonic polynomial symbol; invertibility; 47B35; 47B65;
D O I
暂无
中图分类号
学科分类号
摘要
Let p be an analytic polynomial on the unit disk. We obtain a necessary and sufficient condition for Toeplitz operators with the symbol z¯+p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline z + p$$\end{document} to be invertible on the Bergman space when all coefficients of p are real numbers. Furthermore, we establish several necessary and sufficient, easy-to-check conditions for Toeplitz operators with the symbol z¯+p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline z + p$$\end{document} to be invertible on the Bergman space when some coefficients of p are complex numbers.
引用
收藏
页码:965 / 978
页数:13
相关论文
共 50 条