A Full Proof of the BGW Protocol for Perfectly Secure Multiparty Computation

被引:0
|
作者
Gilad Asharov
Yehuda Lindell
机构
[1] Hebrew University of Jerusalem,School of Computer Science and Engineering
[2] Bar-Ilan University,Department of Computer Science
来源
Journal of Cryptology | 2017年 / 30卷
关键词
Multiparty computation; Perfect security; BGW ; Cryptographic protocols;
D O I
暂无
中图分类号
学科分类号
摘要
In the setting of secure multiparty computation, a set of n parties with private inputs wish to jointly compute some functionality of their inputs. One of the most fundamental results of secure computation was presented by Ben-Or, Goldwasser, and Wigderson (BGW) in 1988. They demonstrated that any n-party functionality can be computed with perfect security, in the private channels model. When the adversary is semi-honest, this holds as long as t<n/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t<n/2$$\end{document} parties are corrupted, and when the adversary is malicious, this holds as long as t<n/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t<n/3$$\end{document} parties are corrupted. Unfortunately, a full proof of these results was never published. In this paper, we remedy this situation and provide a full proof of security of the BGW protocol. This includes a full description of the protocol for the malicious setting, including the construction of a new subprotocol for the perfect multiplication protocol that seems necessary for the case of n/4≤t<n/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n/4\le t<n/3$$\end{document}.
引用
收藏
页码:58 / 151
页数:93
相关论文
共 50 条
  • [41] Secure Multiparty Computation Using Secure Virtual Machines
    Miladinovic, Danko
    Milakovic, Adrian
    Vukasovic, Maja
    Stanisavljevic, Zarko
    Vuletic, Pavle
    ELECTRONICS, 2024, 13 (05)
  • [42] On the Message Complexity of Secure Multiparty Computation
    Ishai, Yuval
    Mittal, Manika
    Ostrovsky, Rafail
    PUBLIC-KEY CRYPTOGRAPHY - PKC 2018, PT I, 2018, 10769 : 698 - 711
  • [43] Practical applications of secure multiparty computation
    Talviste, Riivo
    Cryptology and Information Security Series, 2015, 13 : 246 - 251
  • [44] Secure multiparty computation in cloud computing
    Jiang H.
    Xu Q.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2016, 53 (10): : 2152 - 2162
  • [45] Basic constructions of secure multiparty computation
    Laud, Peeter
    Pankova, Alisa
    Kamm, Liina
    Veeningen, Meilof
    Cryptology and Information Security Series, 2015, 13 : 1 - 25
  • [46] Secure multiparty computation for comparator networks
    Morohashi, Gembu
    Chida, Koji
    Hirota, Keiichi
    Kikuchi, Hiroaki
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2008, E91A (09) : 2349 - 2355
  • [47] Efficient Secure Multiparty Subset Computation
    Zhou, Sufang
    Li, Shundong
    Dou, Jiawei
    Geng, Yaling
    Liu, Xin
    SECURITY AND COMMUNICATION NETWORKS, 2017,
  • [48] ReplayMPC: A Fast Failure Recovery Protocol for Secure Multiparty Computation Applications using Blockchain
    Bautista, Oscar G.
    Akkaya, Kemal
    Homsi, Soamar
    2023 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING, SMARTCOMP, 2023, : 124 - 132
  • [49] Multiparty computation with full computation power and reduced overhead
    Ma, QK
    Hao, W
    Yen, IL
    Bastani, F
    EIGHTH IEEE INTERNATIONAL SYMPOSIUM ON HIGH ASSURANCE SYSTEMS ENGINEERING, PROCEEDINGS, 2004, : 241 - 248
  • [50] SECURE MULTIPARTY QUANTUM AGGREGATING PROTOCOL
    Sutradhar K.
    Quantum Information and Computation, 2023, 23 (3-4): : 245 - 256