Adaptive Sub-sampling for Parametric Estimation of Gaussian Diffusions

被引:0
|
作者
R. Azencott
A. Beri
I. Timofeyev
机构
[1] University of Houston,Department of Mathematics
[2] Ecole Normale Superieure,undefined
来源
关键词
Sub-sampling; Parametric estimation; Stochastic differential equations;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a Gaussian diffusion Xt (Ornstein-Uhlenbeck process) with drift coefficient γ and diffusion coefficient σ2, and an approximating process \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Y^{\varepsilon}_{t}$\end{document} converging to Xt in L2 as ε→0. We study estimators \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat{\gamma}_{\varepsilon}$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat{\sigma}^{2}_{\varepsilon}$\end{document} which are asymptotically equivalent to the Maximum likelihood estimators of γ and σ2, respectively. We assume that the estimators are based on the available N=N(ε) observations extracted by sub-sampling only from the approximating process \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Y^{\varepsilon}_{t}$\end{document} with time step Δ=Δ(ε). We characterize all such adaptive sub-sampling schemes for which \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat{\gamma}_{\varepsilon}$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat{\sigma}^{2}_{\varepsilon}$\end{document} are consistent and asymptotically efficient estimators of γ and σ2 as ε→0. The favorable adaptive sub-sampling schemes are identified by the conditions ε→0, Δ→0, (Δ/ε)→∞, and NΔ→∞, which implies that we sample from the process \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Y^{\varepsilon}_{t}$\end{document} with a vanishing but coarse time step Δ(ε)≫ε. This study highlights the necessity to sub-sample at adequate rates when the observations are not generated by the underlying stochastic model whose parameters are being estimated. The adequate sub-sampling rates we identify seem to retain their validity in much wider contexts such as the additive triad application we briefly outline.
引用
收藏
页码:1066 / 1089
页数:23
相关论文
共 50 条
  • [31] ESTIMATION OF A SIMPLE REGRESSION COEFFICIENT IN SAMPLES ARISING FROM A SUB-SAMPLING PROCEDURE
    DEMETS, D
    HALPERIN, M
    BIOMETRICS, 1977, 33 (01) : 47 - 56
  • [32] A Quadrature Sub-Sampling Phase Detector for Fast-Relocked Sub-Sampling PLL Under External Interference
    Geng, Xinlin
    Xie, Qian
    Wang, Zheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (01) : 87 - 91
  • [33] Comparison of large networks with sub-sampling strategies
    Ali, Waqar
    Wegner, Anatol E.
    Gaunt, Robert E.
    Deane, Charlotte M.
    Reinert, Gesine
    SCIENTIFIC REPORTS, 2016, 6
  • [34] The Effect of Sub-sampling on Hyperspectral Dimension Reduction
    Kozal, A.Ö. (omer.kozal@tubitak.gov.tr), 2013, Springer Verlag (210):
  • [35] When is sub-sampling in RGB displays practical?
    Miller, Michael E.
    Arnold, Andrew D.
    Tutt, Lee
    2007 SID INTERNATIONAL SYMPOSIUM, DIGEST OF TECHNICAL PAPERS, VOL XXXVIII, BOOKS I AND II, 2007, 38 : 1146 - 1149
  • [36] Estimating joint preference: A sub-sampling approach
    Arora, Neeraj
    INTERNATIONAL JOURNAL OF RESEARCH IN MARKETING, 2006, 23 (04) : 409 - 418
  • [37] An adaptive residual sub-sampling algorithm for kernel interpolation based on maximum likelihood estimations
    Cavoretto, Roberto
    De Rossi, Alessandra
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 418
  • [38] Sub-sampling for efficient spectral mesh processing
    Liu, Rong
    Jain, Varun
    Zhang, Hao
    ADVANCES IN COMPUTER GRAPHICS, PROCEEDINGS, 2006, 4035 : 172 - 184
  • [39] Comparison of large networks with sub-sampling strategies
    Waqar Ali
    Anatol E. Wegner
    Robert E. Gaunt
    Charlotte M. Deane
    Gesine Reinert
    Scientific Reports, 6
  • [40] Sub-Sampling Framework of Distributed Video Coding
    Xu, Wenbo
    He, Zhiqiang
    Niu, Kai
    Lin, Jiaru
    2010 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 1145 - 1148