Some Fourier inequalities for orthogonal systems in Lorentz–Zygmund spaces

被引:0
|
作者
G. Akishev
L. E. Persson
A. Seger
机构
[1] L.N. Gumilyov Eurasian National University,Department of Fundamental Mathematics
[2] Ural Federal University,Institute of Mathematics and Computer Science
[3] The Artic University of Norway,Department of Computer Science and Computational Engineering Campus Narvik
来源
Journal of Inequalities and Applications | / 2019卷
关键词
Inequalities; Fourier series; Fourier coefficients; Unbounded orthogonal systems; Lorentz–Zygmund spaces; 42A16; 42B05; 26D15; 26D20; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
A number of classical inequalities and convergence results related to Fourier coefficients with respect to unbounded orthogonal systems are generalized and complemented. All results are given in the case of Lorentz–Zygmund spaces.
引用
收藏
相关论文
共 50 条
  • [21] Nikol’skii-type inequalities for entire functions of exponential type in Lorentz–Zygmund spaces
    Leo R. Ya. Doktorski
    Boletín de la Sociedad Matemática Mexicana, 2023, 29
  • [22] An embedding theorem in Lorentz-Zygmund spaces
    Greco, L
    Moscariello, G
    POTENTIAL ANALYSIS, 1996, 5 (06) : 581 - 590
  • [23] ON LIPSCHITZ-LORENTZ SPACES AND THEIR ZYGMUND CLASSES
    Eryilmaz, Ilker
    Duyar, Cenap
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2010, 39 (02): : 159 - 169
  • [24] On decompositions in generalised Lorentz-Zygmund spaces
    Neves, JS
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2001, 4B (01): : 239 - 267
  • [25] Distinctness of spaces of Lorentz-Zygmund multipliers
    Hare, KE
    Mohanty, P
    STUDIA MATHEMATICA, 2005, 169 (02) : 143 - 161
  • [26] ON SUMMABILITY OF THE FOURIER COEFFICIENTS IN BOUNDED ORTHONORMAL SYSTEMS FOR FUNCTIONS FROM SOME LORENTZ TYPE SPACES
    Kopezhanova, A. N.
    Persson, L. -E.
    EURASIAN MATHEMATICAL JOURNAL, 2010, 1 (02): : 76 - 85
  • [27] Nikol'skii-type inequalities for entire functions of exponential type in Lorentz-Zygmund spaces
    Doktorski, Leo R. Ya
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2023, 29 (01):
  • [28] Convolution Inequalities in Lorentz Spaces
    Nursultanov, Erlan
    Tikhonov, Sergey
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (03) : 486 - 505
  • [29] Convolution Inequalities in Lorentz Spaces
    Erlan Nursultanov
    Sergey Tikhonov
    Journal of Fourier Analysis and Applications, 2011, 17 : 486 - 505
  • [30] ASSOCIATE SPACES OF LOGARITHMIC INTERPOLATION SPACES AND GENERALIZED LORENTZ-ZYGMUND SPACES
    Besoy, Blanca F.
    Cobos, Fernando
    Fernandez-Cabrera, Luz M.
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 493 - 510