Few-shot bearing fault diagnosis using GAVMD–PWVD time–frequency image based on meta-transfer learning

被引:0
|
作者
Pengying Wei
Mingliang Liu
Xiaohang Wang
机构
[1] Heilongjiang University,Department of Automation
[2] Key Laboratory of Information Fusion Estimation and Detection,undefined
关键词
Rolling bearing; Fault diagnosis; Time–frequency image; Few-shot learning; Meta-learning; Transfer learning; Relation network;
D O I
暂无
中图分类号
学科分类号
摘要
Rolling bearings are crucial components in rotating machinery and often operate under high speeds and heavy loads for extended periods of time. If a bearing fails, it can disrupt the normal functioning of the machinery and lead to economic losses and even casualties. As a result, diagnosing faults in rolling bearings is critical and urgent. Currently, traditional fault diagnosis methods and deep learning-based methods are used for rolling bearing fault diagnosis. However, traditional methods require knowledge of signal processing techniques and selecting fault features through artificial algorithms. On the other hand, deep learning-based methods require a large number of labeled samples, but fault samples are often limited in practice. Additionally, there can be a problem of insufficient generalization ability when bearing working conditions change, which limits the application of deep learning in bearing fault diagnosis. To address this issue, a novel method is proposed in this paper that involves few-shot transfer learning and meta-learning. The method consists of four stages: using genetic algorithm to determine penalty factor and modal numbers adaptively in variational modal decomposition (GAVMD), combining correlation coefficient to eliminate useless modes, obtaining the instantaneous frequency characteristics of useful modes through Pseudo Wigner–Ville Distribution (PWVD), and using GAVMD with PWVD to obtain time–frequency images of the vibration signals of the rotating bearing. Finally, an improved relational network with deep coding ability and attention mechanism (AM) is constructed based on meta-transfer-learning and original relational network (MTLRN-AM). The experiments in this paper are based on the benchmark dataset of bearing fault diagnosis, and the results show that the proposed method has better multi-task learning ability in meta-learning and better classification performance in few-shot scenarios for bearing fault diagnosis. The average recognition rate reached 96.53% and 98% in 10-way 1-shot and 10-way 5-shot, respectively.
引用
收藏
相关论文
共 50 条
  • [21] A meta transfer learning fault diagnosis method for gearbox with few-shot data
    Yang, Zhichao
    Duan, Yudan
    She, Daoming
    Pecht, Michael G.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (02)
  • [22] Brain-Inspired Meta-Learning for Few-Shot Bearing Fault Diagnosis
    Wang, Jun
    Sun, Chuang
    Nandi, Asoke K.
    Yan, Ruqiang
    Chen, Xuefeng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [23] A Deep Learning-Based Method for Bearing Fault Diagnosis with Few-Shot Learning
    Li, Yang
    Gu, Xiaojiao
    Wei, Yonghe
    SENSORS, 2024, 24 (23)
  • [24] A Novel Bearing Fault Diagnosis Method Based on Few-Shot Transfer Learning across Different Datasets
    Zhang, Yizong
    Li, Shaobo
    Zhang, Ansi
    Li, Chuanjiang
    Qiu, Ling
    ENTROPY, 2022, 24 (09)
  • [25] Few-shot transfer learning for intelligent fault diagnosis of machine
    Wu, Jingyao
    Zhao, Zhibin
    Sun, Chuang
    Yan, Ruqiang
    Chen, Xuefeng
    MEASUREMENT, 2020, 166 (166)
  • [26] Few-Shot Fault Diagnosis Based on Heterogeneous Information Fusion and Meta Learning
    Zhang, Xiaofei
    Tang, Jingbo
    Qu, Yinpeng
    Qin, Guojun
    Guo, Lei
    Xie, Jinping
    Long, Zhuo
    IEEE SENSORS JOURNAL, 2023, 23 (18) : 21433 - 21442
  • [27] Knowledge-enhanced meta-transfer learning for few-shot ECG signal classification
    Fan, Lulu
    Chen, Bingyang
    Zeng, Xingjie
    Zhou, Jiehan
    Zhang, Xin
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 263
  • [28] Limited Data Rolling Bearing Fault Diagnosis With Few-Shot Learning
    Zhang, Ansi
    Li, Shaobo
    Cui, Yuxin
    Yang, Wanli
    Dong, Rongzhi
    Hu, Jianjun
    IEEE ACCESS, 2019, 7 : 110895 - 110904
  • [29] Meta-learning for few-shot bearing fault diagnosis under complex working conditions
    Li, Chuanjiang
    Li, Shaobo
    Zhang, Ansi
    He, Qiang
    Liao, Zihao
    Hu, Jianjun
    NEUROCOMPUTING, 2021, 439 : 197 - 211
  • [30] A novel meta-transfer learning approach via convolutional multi-head self-attention network for few-shot fault diagnosis
    Wan, Lanjun
    Huang, Le
    Ning, Jiaen
    Li, Changyun
    Li, Keqin
    KNOWLEDGE-BASED SYSTEMS, 2024, 299