Deficiency Indices for Singular Magnetic Schrödinger Operators

被引:0
|
作者
Michele Correggi
Davide Fermi
机构
[1] Dipartimento di Matematica,
[2] Politecnico di Milano,undefined
[3] Istituto Nazionale di Fisica Nucleare,undefined
[4] Sezione di Milano,undefined
来源
关键词
Schrödinger operators with singular magnetic fields; Deficiency indices; Aharonov–Bohm potentials; 35J10; 35P05; 47B25; 81Q10; 81Q70;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the deficiency indices of magnetic Schrödinger operators with several local singularities can be computed in terms of the deficiency indices of operators carrying just one singularity each. We discuss some applications to physically relevant operators.
引用
收藏
页码:25 / 39
页数:14
相关论文
共 50 条
  • [41] Singular Density of States Measure for Subshift and Quasi-Periodic Schrödinger Operators
    Artur Avila
    David Damanik
    Zhenghe Zhang
    Communications in Mathematical Physics, 2014, 330 : 469 - 498
  • [42] Periodic magnetic Schrödinger operators: Spectral gaps and tunneling effect
    Yu. A. Kordyukov
    B. Helffer
    Proceedings of the Steklov Institute of Mathematics, 2008, 261 : 171 - 182
  • [43] Two-dimensional Schrödinger operators with non-local singular potentials
    Heriban, Lukas
    Holzmann, Markus
    Stelzer-Landauer, Christian
    Stenzel, Georg
    Tusek, Matej
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 549 (02)
  • [44] Weighted Spectral Gap for Magnetic Schrödinger Operators with a Potential Term
    M. Enstedt
    K. Tintarev
    Potential Analysis, 2009, 31 : 215 - 226
  • [45] Spectral optimization for strongly singular Schrödinger operators with a star-shaped interaction
    P. Exner
    S. Kondej
    Letters in Mathematical Physics, 2020, 110 : 735 - 751
  • [46] Sharp Pointwise Weyl Laws for Schrödinger Operators with Singular Potentials on Flat Tori
    Xiaoqi Huang
    Cheng Zhang
    Communications in Mathematical Physics, 2023, 401 : 1063 - 1125
  • [47] Inverse Problems for Magnetic Schrödinger Operators in Transversally Anisotropic Geometries
    Katya Krupchyk
    Gunther Uhlmann
    Communications in Mathematical Physics, 2018, 361 : 525 - 582
  • [48] Spectral Gaps for Periodic Schrödinger Operators with Strong Magnetic Fields
    Yuri A. Kordyukov
    Communications in Mathematical Physics, 2005, 253 : 371 - 384
  • [49] Self-Adjoint Extensions of Discrete Magnetic Schrödinger Operators
    Ognjen Milatovic
    Françoise Truc
    Annales Henri Poincaré, 2014, 15 : 917 - 936
  • [50] An Example of Embedded Singular Continuous Spectrum for One-Dimensional Schrödinger Operators
    Olga Tchebotareva
    Letters in Mathematical Physics, 2005, 72 : 225 - 231