Deficiency Indices for Singular Magnetic Schrödinger Operators

被引:0
|
作者
Michele Correggi
Davide Fermi
机构
[1] Dipartimento di Matematica,
[2] Politecnico di Milano,undefined
[3] Istituto Nazionale di Fisica Nucleare,undefined
[4] Sezione di Milano,undefined
来源
关键词
Schrödinger operators with singular magnetic fields; Deficiency indices; Aharonov–Bohm potentials; 35J10; 35P05; 47B25; 81Q10; 81Q70;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the deficiency indices of magnetic Schrödinger operators with several local singularities can be computed in terms of the deficiency indices of operators carrying just one singularity each. We discuss some applications to physically relevant operators.
引用
收藏
页码:25 / 39
页数:14
相关论文
共 50 条
  • [1] Deficiency Indices for Singular Magnetic Schrödinger Operators
    Correggi, Michele
    Fermi, Davide
    MILAN JOURNAL OF MATHEMATICS, 2024, 92 (01) : 25 - 39
  • [2] Commutators of Singular Integral Operators Related to Magnetic Schrdinger Operators
    Wanqing Ma
    Yu Liu
    Analysis in Theory and Applications, 2018, 34 (01) : 45 - 56
  • [3] Hierarchical Schrödinger Operators with Singular Potentials
    Alexander Bendikov
    Alexander Grigor’yan
    Stanislav Molchanov
    Proceedings of the Steklov Institute of Mathematics, 2023, 323 : 12 - 46
  • [4] Hierarchical Schrödinger Operators with Singular Potentials
    Bendikov, Alexander
    Grigor'yan, Alexander
    Molchanov, Stanislav
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2023, 323 (01) : 12 - 46
  • [5] The Morse and Maslov indices for Schrödinger operators
    Yuri Latushkin
    Selim Sukhtaiev
    Alim Sukhtayev
    Journal d'Analyse Mathématique, 2018, 135 : 345 - 387
  • [6] Perturbations of Magnetic Schrödinger Operators
    M. Măntoiu
    M. Pascu
    Letters in Mathematical Physics, 2000, 54 : 181 - 192
  • [7] Applications of the landscape function for Schrödinger operators with singular potentials and irregular magnetic fields
    Poggi, Bruno
    ADVANCES IN MATHEMATICS, 2024, 445
  • [8] Scattering for the fractional magnetic Schrödinger operators
    Wei, Lei
    Duan, Zhiwen
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (06) : 2391 - 2410
  • [9] SCATTERING FOR THE FRACTIONAL MAGNETIC SCHR?DINGER OPERATORS
    魏磊
    段志文
    Acta Mathematica Scientia, 2024, 44 (06) : 2391 - 2410
  • [10] Spectral Multipliers for Magnetic Schrödinger Operators
    Zheng S.
    La Matematica, 2024, 3 (3): : 907 - 940