Nonlinear Generalized Lie Triple Higher Derivation on Triangular Algebras

被引:0
|
作者
Mohammad Ashraf
Aisha Jabeen
机构
[1] Aligarh Muslim University,Department of Mathematics
来源
Bulletin of the Iranian Mathematical Society | 2018年 / 44卷
关键词
Triangular algebra; Generalized higher derivation; Generalized Lie triple higher derivation; 16W25; 15A78;
D O I
暂无
中图分类号
学科分类号
摘要
Let R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}$$\end{document} be a commutative ring with unity. A triangular algebra is an algebra of the form A=AM0B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {A}} = \left[ \begin{array}{cc} {\mathcal {A}} &{} {\mathcal {M}} \\ 0 &{} {\mathcal {B}} \\ \end{array} \right] $$\end{document} where A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} and B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}$$\end{document} are unital algebras over R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}$$\end{document} and M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}$$\end{document} is an (A,B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {A}},{\mathcal {B}})$$\end{document}-bimodule which is faithful as a left A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document}-module as well as a right B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}$$\end{document}-module. In this paper, we study nonlinear generalized Lie triple higher derivation on A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {A}}$$\end{document} and show that under certain assumptions on A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {A}}$$\end{document}, every nonlinear generalized Lie triple higher derivation on A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {A}}$$\end{document} is of standard form, i.e., each component of a nonlinear generalized Lie triple higher derivation on A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {A}}$$\end{document} can be expressed as the sum of an additive generalized higher derivation and a nonlinear functional vanishing on all Lie triple products on A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {A}}$$\end{document}.
引用
收藏
页码:513 / 530
页数:17
相关论文
共 50 条
  • [41] Generalized Lie n-derivations of triangular algebras
    Benkovic, Dominik
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (12) : 5294 - 5302
  • [42] Note on the generalized derivation tower theorem for Lie algebras
    Petit, T
    Van Oystaeyen, F
    ABELIAN GROUPS, RINGS, MODULES, AND HOMOLOGICAL ALGEBRA, 2006, 249 : 251 - +
  • [43] NONLINEAR ξ-JORDAN TRIPLE *-DERIVATION ON PRIME *-ALGEBRAS
    Zhang, Fangjuan
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (01) : 323 - 333
  • [44] Nonlinear Mixed λ-Jordan Triple Derivation on *-algebras
    Alali, Amal S.
    Nisar, Junaid
    Rehman, Nadeem ur
    Alnoghashi, Hafedh M.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (04): : 3399 - 3414
  • [45] NONLINEAR *-JORDAN TRIPLE DERIVATION ON PRIME *-ALGEBRAS
    Darvish, Vahid
    Nouri, Mojtaba
    Razeghi, Mehran
    Taghavi, Ali
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (02) : 543 - 549
  • [46] Multiplicative generalized Lie triple derivations on generalized matrix algebras
    Jabeen, Aisha
    QUAESTIONES MATHEMATICAE, 2021, 44 (02) : 243 - 257
  • [47] Notes on centralizing traces and Lie triple isomorphisms on triangular algebras
    Wang, Yu
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (05): : 863 - 869
  • [48] Nonlinear maps preserving Lie products on triangular algebras
    Yu, Weiyan
    SPECIAL MATRICES, 2016, 4 (01): : 56 - 66
  • [49] The structure of nonlinear Lie derivation on von Neumann algebras
    Bai, Zhaofang
    Du, Shuanping
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (07) : 2701 - 2708
  • [50] DERIVATION ALGEBRAS OF LIE ALGEBRAS
    TOGO, S
    CANADIAN JOURNAL OF MATHEMATICS, 1961, 13 (02): : 201 - &