On Exact Solutions of a Multidimensional System of Elliptic Equations with Power-Law Nonlinearities

被引:2
|
作者
Kosov, A. A. [1 ]
Semenov, E. I. [1 ]
机构
[1] Russian Acad Sci, Siberian Branch, Matrosov Inst Syst Dynam & Control Theory, Irkutsk 664033, Russia
基金
俄罗斯科学基金会;
关键词
POSITIVE SOLUTIONS; DIFFUSION;
D O I
10.1134/S0012266123120054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Equations and systems of elliptic type with power-law nonlinearities are considered. Such equations are found in modeling distributed robotic formations, as well as in chemical kinetics, biology, astrophysics, and many other fields. The problem of constructing multidimensional exact solutions is studied. It is proposed to use a special type of ansatz that reduces the problem to solving systems of algebraic equations. A number of multiparameter families of new exact multidimensional solutions (both radially symmetric and anisotropic) represented by explicit formulas are obtained. Examples are given to illustrate the exact solutions found.
引用
收藏
页码:1627 / 1649
页数:23
相关论文
共 50 条
  • [21] Solitons and elliptic function solutions of higher-order dispersive and perturbed nonlinear Schrödinger equations with the power-law nonlinearities in non-Kerr medium
    Naila Nasreen
    Aly R. Seadawy
    Dianchen Lu
    Muhammad Arshad
    The European Physical Journal Plus, 134
  • [22] On the stability of power-law solutions in multidimensional Gauss-Bonnet cosmology
    Chirkov, D. M.
    Toporensky, A. V.
    GRAVITATION & COSMOLOGY, 2013, 19 (04): : 275 - 283
  • [23] On the stability of power-law solutions in multidimensional Gauss-Bonnet cosmology
    D. M. Chirkov
    A. V. Toporensky
    Gravitation and Cosmology, 2013, 19 : 275 - 283
  • [24] Exact self-similar solutions of the magnetohydrodynamic boundary layer system for power-law fluids
    Zhang, Zhongxin
    Wang, Junyu
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2007, 58 (05): : 805 - 817
  • [25] Exact self-similar solutions of the magnetohydrodynamic boundary layer system for power-law fluids
    Zhongxin Zhang
    Junyu Wang
    Zeitschrift für angewandte Mathematik und Physik, 2007, 58 : 805 - 817
  • [26] NEW EXACT-SOLUTIONS FOR POWER-LAW INFLATION FRIEDMANN MODELS
    SCHMIDT, HJ
    ASTRONOMISCHE NACHRICHTEN, 1990, 311 (03) : 165 - 168
  • [27] Exact, E=0, quantum solutions for general power-law potentials
    Daboul, J
    Nieto, MM
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (20): : 3801 - 3817
  • [28] New Exact Solutions of the Davey–Stewartson Equation with Power-Law Nonlinearity
    Y. Gurefe
    E. Misirli
    Y. Pandir
    A. Sonmezoglu
    M. Ekici
    Bulletin of the Malaysian Mathematical Sciences Society, 2015, 38 : 1223 - 1234
  • [29] BRAESS PARADOX AND POWER-LAW NONLINEARITIES IN NETWORKS
    CALVERT, B
    KEADY, G
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1993, 35 : 1 - 22
  • [30] Multidimensional exact solutions of a nonlinear system of two parabolic equations
    Kosov, A. A.
    Semenov, E. I.
    SIBERIAN MATHEMATICAL JOURNAL, 2015, 56 (04) : 637 - 649