Rational surfaces and moduli spaces of vector bundles on rational surfaces

被引:0
|
作者
L. Costa
R. M. Miró-Roig
机构
[1] Dept. Àlgebra i Geometria,
[2] Facultat de Matemàtiques,undefined
[3] Universiat de Barcelona,undefined
[4] 08007 Barcelona,undefined
[5] Spain,undefined
[6] e-mail: costa@mat.ub.es,undefined
[7] e-mail: miro@mat.ub.es,undefined
来源
Archiv der Mathematik | 2002年 / 78卷
关键词
Modulus Space; Vector Bundle; Algebraic Surface; Rational Surface; Ample Divisor;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a smooth algebraic surface, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ L \in \textrm{Pic}(X) $\end{document} and H an ample divisor on X. Set MX,H(2; L, c2) the moduli space of rank 2, H-stable vector bundles F on X with det(F) = L and c2(F) = c2. In this paper, we show that the geometry of X and of MX,H(2; L, c2) are closely related. More precisely, we prove that for any ample divisor H on X and any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ L \in \textrm{Pic}(X) $\end{document}, there exists \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ n_0 \in \mathbb{Z} $\end{document} such that for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ n_0 \leqq c_2 \in \mathbb{Z} $\end{document}, MX,H(2; L, c2) is rational if and only if X is rational.
引用
收藏
页码:249 / 256
页数:7
相关论文
共 50 条
  • [21] Bubble tree compactification of moduli spaces of vector bundles on surfaces
    Markushevich, Dimitri
    Tikhomirov, Alexander S.
    Trautmann, Guenther
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2012, 10 (04): : 1331 - 1355
  • [22] On rationality of moduli spaces of vector bundles on real Hirzebruch surfaces
    Biswas, Indranil
    Sebastian, Ronnie
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2013, 123 (02): : 213 - 223
  • [23] On rationality of moduli spaces of vector bundles on real Hirzebruch surfaces
    INDRANIL BISWAS
    RONNIE SEBASTIAN
    Proceedings - Mathematical Sciences, 2013, 123 : 213 - 223
  • [24] Vector bundles on rational homogeneous spaces
    Du, Rong
    Fang, Xinyi
    Gao, Yun
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (06) : 2797 - 2827
  • [25] Vector bundles on rational homogeneous spaces
    Rong Du
    Xinyi Fang
    Yun Gao
    Annali di Matematica Pura ed Applicata (1923 -), 2021, 200 : 2797 - 2827
  • [26] ON THE MODULI OF CURVES ON RATIONAL RULED SURFACES
    FAUNTLEROY, A
    AMERICAN JOURNAL OF MATHEMATICS, 1987, 109 (03) : 417 - 452
  • [27] MODULI SPACES OF THE STABLE VECTOR-BUNDLES OVER ABELIAN SURFACES
    UMEMURA, H
    NAGOYA MATHEMATICAL JOURNAL, 1980, 77 (FEB) : 47 - 60
  • [28] Theta Functions and Hodge Numbers of Moduli Spaces of Sheaves on Rational Surfaces
    Lothar Göttsche
    Communications in Mathematical Physics, 1999, 206 : 105 - 136
  • [29] Framed holomorphic bundles on rational surfaces
    Santos, JP
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2005, 589 : 129 - 158
  • [30] Theta functions and Hodge numbers of moduli spaces of sheaves on rational surfaces
    Göttsche, L
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 206 (01) : 105 - 136