Application of Neural Networks for Recognizing Rail Structural Elements in Magnetic and Eddy Current Defectograms

被引:0
|
作者
E. V. Kuzmin
O. E. Gorbunov
P. O. Plotnikov
V. A. Tyukin
V. A. Bashkin
机构
[1] Demidov Yaroslavl State University,
[2] OOO Centre of Innovative Programming,undefined
来源
Automatic Control and Computer Sciences | 2019年 / 53卷
关键词
nondestructive testing of rails; magnetic and eddy current testing; defect detection; automatic analysis of defectograms; neural networks;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:628 / 637
页数:9
相关论文
共 50 条
  • [31] APPLICATION OF NEURAL NETWORKS IN FAULT CURRENT DETECTION
    Zhao, Yang
    Wen, QiYong
    Feng, Yue
    2011 INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING AND TECHNOLOGY (ICMET 2011), 2011, : 511 - +
  • [32] Application of Tribological Artificial Neural Networks in Machine Elements
    Walker, J.
    Questa, H.
    Raman, A.
    Ahmed, M.
    Mohammadpour, M.
    Bewsher, S. R.
    Offner, G.
    TRIBOLOGY LETTERS, 2023, 71 (01)
  • [33] Application of Tribological Artificial Neural Networks in Machine Elements
    J. Walker
    H. Questa
    A. Raman
    M. Ahmed
    M. Mohammadpour
    S. R. Bewsher
    G. Offner
    Tribology Letters, 2023, 71
  • [34] Eddy current loss evaluation of magnetic powder core based on electric and magnetic networks
    Konda, Shigeru
    Yoshida, Yukihiro
    Ichinokura, Osamu
    AIP ADVANCES, 2017, 7 (05):
  • [35] The Application of Neural Networks to the Modeling of Magnetic Hysteresis
    Vuokila, Niilo
    Cunning, Christos
    Zhang, Jayson
    Akel, Nader
    Khan, Arbaaz
    Lowther, David A.
    IEEE TRANSACTIONS ON MAGNETICS, 2024, 60 (03) : 1 - 4
  • [36] Functional and Structural Features of Recurrent Neural Networks with Controlled Elements
    Osipov, Vasiliy
    Nikiforov, Viktor
    ADVANCES IN NEURAL NETWORKS - ISNN 2019, PT I, 2019, 11554 : 133 - 140
  • [37] MRPC eddy current flaw classification in tubes using deep neural networks
    Park, Jinhyun
    Han, Seong-Jin
    Munir, Nauman
    Yeom, Yun-Taek
    Song, Sung-Jin
    Kim, Hak-Joon
    Kwon, Se-Gon
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2019, 51 (07) : 1784 - 1790
  • [38] Characterisation of eddy current signals using different types of artificial neural networks
    Shyamsunder, MT
    Rajagopalan, C
    Ray, KK
    Jayakumar, T
    Kalyanasundaram, P
    Raj, B
    TRENDS IN NDE SCIENCE AND TECHNOLOGY - PROCEEDINGS OF THE 14TH WORLD CONFERENCE ON NDT (14TH WCNDT), VOLS 1-5, 1996, : 1875 - 1879
  • [39] Eddy current flaw characterization in tubes by neural networks and finite element modeling
    Song, SJ
    Shin, YK
    NDT & E INTERNATIONAL, 2000, 33 (04) : 233 - 243
  • [40] Flaws identification using eddy current differential transducer and artificial neural networks
    Chady, T
    Lopato, P
    REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLS 25A AND 25B, 2006, 820 : 783 - 790